ﻻ يوجد ملخص باللغة العربية
We investigate the effects of anisotropy on the chiral condensate in a holographic model of QCD with a fully backreacted quark sector at vanishing chemical potential. The high temperature deconfined phase is a neutral and anisotropic plasma showing different pressure gradients along different spatial directions, similar to the state produced in noncentral heavy-ion collisions. We find that the chiral transition occurs at a lower temperature in the presence of anisotropy. Equivalently, we find that anisotropy acts destructively on the chiral condensate near the transition temperature. These are precisely the same footprints as the inverse magnetic catalysis i.e. the destruction of the condensate with increasing magnetic field observed earlier on the lattice, in effective field theory models and in holography. Based on our findings we suggest, in accordance with the conjecture of [1], that the cause for the inverse magnetic catalysis may be the anisotropy caused by the presence of the magnetic field instead of the charge dynamics created by it. We conclude that the weakening of the chiral condensate due to anisotropy is more general than that due to a magnetic field and we coin the former inverse anisotropic catalysis. Finally, we observe that any amount of anisotropy changes the IR physics substantially: the geometry is $text{AdS}_4 times mathbb{R}$ up to small corrections, confinement is present only up to a certain scale, and the particles acquire finite widths.
We study the effects of the CP-breaking topological $theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the
We apply the relation between deep learning (DL) and the AdS/CFT correspondence to a holographic model of QCD. Using a lattice QCD data of the chiral condensate at a finite temperature as our training data, the deep learning procedure holographically
An approach to realize a hyperon as a bound-state of a two-flavor baryon and a kaon is considered in the context of the Sakai-Sugimoto model of holographic QCD, which approach has been known in the Skyrme model as the bound-state approach to strangen
In this paper we study the dynamical instability of Sakai-Sugimotos holographic QCD model at finite baryon density. In this model, the baryon density, represented by the smeared instanton on the worldvolume of the probe D8-overline{D8} mesonic brane,
We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transi