ﻻ يوجد ملخص باللغة العربية
Can we build small neuromorphic chips capable of training deep networks with billions of parameters? This challenge requires hardware neurons and synapses with nanometric dimensions, which can be individually tuned, and densely connected. While nanosynaptic devices have been pursued actively in recent years, much less has been done on nanoscale artificial neurons. In this paper, we show that spintronic nano-oscillators are promising to implement analog hardware neurons that can be densely interconnected through electromagnetic signals. We show how spintronic oscillators maps the requirements of artificial neurons. We then show experimentally how an ensemble of four coupled oscillators can learn to classify all twelve American vowels, realizing the most complicated tasks performed by nanoscale neurons.
Arrays of spin-torque nano-oscillators are promising for broadband microwave signal detection and processing, as well as for neuromorphic computing. In many of these applications, the oscillators should be engineered to have equally-spaced frequencie
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode co
Neurons in the brain behave as a network of coupled nonlinear oscillators processing information by rhythmic activity and interaction. Several technological approaches have been proposed that might enable mimicking the complex information processing
The emergence of exceptional points (EPs) in the parameter space of a (2D) eigenvalue problem is studied in a general sense in mathematical physics. In coupled systems, it gives rise to unique physical phenomena upon which novel approaches for the de
The recent demonstration of neuromorphic computing with spin-torque nano-oscillators has opened a path to energy efficient data processing. The success of this demonstration hinged on the intrinsic short-term memory of the oscillators. In this study,