ترغب بنشر مسار تعليمي؟ اضغط هنا

Exceptional points controlling oscillation death in coupled spintronic nano-oscillators

125   0   0.0 ( 0 )
 نشر من قبل Steffen Wittrock
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of exceptional points (EPs) in the parameter space of a (2D) eigenvalue problem is studied in a general sense in mathematical physics. In coupled systems, it gives rise to unique physical phenomena upon which novel approaches for the development of seminal types of highly sensitive sensors shall leverage their fascinating properties. Here, we demonstrate at room temperature the emergence of EPs in coupled spintronic nano-oscillators, coming along with the observation of amplitude death of self-oscillations and other complex dynamics. The main experimental features are properly described by the linearized theory of coupled system dynamics we develop. Interestingly, these spintronic nanoscale oscillators are deployment-ready in different applicational fields, such as sensors or radiofrequeny and wireless technology and, more recently, novel neuromorphic hardware solutions. Their unique and versatile properties, notably their large nonlinear behavior open up unprecedented perspectives in experiments as well as in theory on the physics of exceptional points.



قيم البحث

اقرأ أيضاً

253 - Hongjie Bi , Xin Hu , Xiyun Zhang 2017
Recently, the explosive phase transitions, such as explosive percolation and explosive synchronization, have attracted extensive research interest. So far, most existing works investigate Kuramoto-type models, where only phase variables are involved. Here, we report the occurrence of explosive oscillation quenching in a system of coupled Stuart-Landau oscillators that incorporates both phase and amplitude dynamics. We observe three typical scenarios with distinct microscopic mechanism of occurrence, i.e., ordinary, hierarchical, and cluster explosive oscillation death, corresponding to different frequency distributions of oscillators, respectively. We carry out theoretical analyses and obtain the backward transition point, which is shown to be independent of the specific frequency distributions. Numerical results are consistent with the theoretical prediction.
215 - H. T. Wu , Lei Wang , Tai Min 2021
We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed re lative phases, in this new synchronized state two STNOs have the same frequency, but their relative phase varies periodically within the common period, resulting in a dynamic waving pattern. The amplitude of the oscillating relative phase depends on the coupling strength of two STNOs, as well as the driven currents. The dancing synchronization turns out to be universal, and can exist in two nonlinear Van der Pol oscillators coupled both reactively and dissipativly. Our findings open doors for new functional STNO-based devices.
Neurons in the brain behave as a network of coupled nonlinear oscillators processing information by rhythmic activity and interaction. Several technological approaches have been proposed that might enable mimicking the complex information processing of neuromorphic computing, some of them relying on nanoscale oscillators. For example, spin torque oscillators are promising building blocks for the realization of artificial high-density, low-power oscillatory networks (ON) for neuromorphic computing. The local external control and synchronization of the phase relation of oscillatory networks are among the key challenges for implementation with nanotechnologies. Here we propose a new method of phase programming in ONs by manipulation of the saturation magnetization, and consequently the resonance frequency of a single oscillator via Joule heating by a simple DC voltage input. We experimentally demonstrate this method in a pair of stray field coupled magnetic vortex oscillators. Since this method only relies on the oscillatory behavior of coupled oscillators, and the temperature dependence of the saturation magnetization, it allows for variable phase programming in a wide range of geometries and applications that can help advance the efforts of high frequency neuromorphic spintronics up to the GHz regime.
In this paper, we propose to control the strength of phase-locking between two dipolarly coupled vortex based spin-torque nano-oscillators by placing an intermediate oscillator between them. We show through micromagnetic simulations that the strength of phase-locking can be largely tuned by a slight variation of current in the intermediate oscillator. We develop simplified numerical simulations based on analytical expressions of the vortex core trajectories that will be useful for investigating large arrays of densely packed spin-torque oscillators interacting through their stray fields.
We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization oc curs as a function of their diameter mismatch. We obtain numerically a phase diagram showing the transition between unsynchronized and synchronized states and compare it to analytical predictions we make using Thiele approach. Our study demonstrates that for relatively small diameters differences the synchronization dynamics can be described qualitatively using Adler equation. However when the diameters difference increases significantly, the system becomes strongly non-Adlerian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا