ﻻ يوجد ملخص باللغة العربية
The emergence of exceptional points (EPs) in the parameter space of a (2D) eigenvalue problem is studied in a general sense in mathematical physics. In coupled systems, it gives rise to unique physical phenomena upon which novel approaches for the development of seminal types of highly sensitive sensors shall leverage their fascinating properties. Here, we demonstrate at room temperature the emergence of EPs in coupled spintronic nano-oscillators, coming along with the observation of amplitude death of self-oscillations and other complex dynamics. The main experimental features are properly described by the linearized theory of coupled system dynamics we develop. Interestingly, these spintronic nanoscale oscillators are deployment-ready in different applicational fields, such as sensors or radiofrequeny and wireless technology and, more recently, novel neuromorphic hardware solutions. Their unique and versatile properties, notably their large nonlinear behavior open up unprecedented perspectives in experiments as well as in theory on the physics of exceptional points.
Recently, the explosive phase transitions, such as explosive percolation and explosive synchronization, have attracted extensive research interest. So far, most existing works investigate Kuramoto-type models, where only phase variables are involved.
We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed re
Neurons in the brain behave as a network of coupled nonlinear oscillators processing information by rhythmic activity and interaction. Several technological approaches have been proposed that might enable mimicking the complex information processing
In this paper, we propose to control the strength of phase-locking between two dipolarly coupled vortex based spin-torque nano-oscillators by placing an intermediate oscillator between them. We show through micromagnetic simulations that the strength
We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization oc