ترغب بنشر مسار تعليمي؟ اضغط هنا

LOCC protocols with bounded width per round optimize convex functions

113   0   0.0 ( 0 )
 نشر من قبل Debbie W. Leung
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We start with the task of discriminating finitely many multipartite quantum states using LOCC protocols, with the goal to optimize the probability of correctly identifying the state. We provide two different methods to show that finitely many measurement outcomes in every step are sufficient for approaching the optimal probability of discrimination. In the first method, each measurement of an optimal LOCC protocol, applied to a $d_{rm loc}$-dim local system, is replaced by one with at most $2d_{rm loc}^2$ outcomes, without changing the probability of success. In the second method, we decompose any LOCC protocol into a convex combination of a number of slim protocols in which each measurement applied to a $d_{rm loc}$-dim local system has at most $d_{rm loc}^2$ outcomes. To maximize any convex functions in LOCC (including the probability of state discrimination or fidelity of state transformation), an optimal protocol can be replaced by the best slim protocol in the convex decomposition without using shared randomness. For either method, the bound on the number of outcomes per measurement is independent of the global dimension, the number of parties, the depth of the protocol, how deep the measurement is located, and applies to LOCC protocols with infinite rounds, and the measurement compression can be done top-down -- independent of later operations in the LOCC protocol. The second method can be generalized to implement LOCC instruments with finitely many outcomes: if the instrument has $n$ coarse-grained final measurement outcomes, global input dimension $D_0$ and global output dimension $D_i$ for $i=1,...,n$ conditioned on the $i$-th outcome, then one can obtain the instrument as a convex combination of no more than $R=sum_{i=1}^n D_0^2 D_i^2 - D_0^2 + 1$ slim protocols; in other words, $log_2 R$ bits of shared randomess suffice.



قيم البحث

اقرأ أيضاً

A single-party strategy in a multi-round quantum protocol can be implemented by sequential networks of quantum operations connected by internal memories. Here provide the most efficient realization in terms of computational-space resources.
153 - Honghao Fu , Debbie Leung , 2013
We consider bipartite LOCC, the class of operations implementable by local quantum operations and classical communication between two parties. Surprisingly, there are operations that cannot be implemented with finitely many messages but can be approx imated to arbitrary precision with more and more messages. This significantly complicates the analysis of what can or cannot be approximated with LOCC. Towards alleviating this problem, we exhibit two scenarios in which allowing vanishing error does not help. The first scenario involves implementation of measurements with projective product measurement operators. The second scenario is the discrimination of unextendible product bases on two 3-dimensional systems.
We consider the problem of estimating multiple analytic functions of a set of local parameters via qubit sensors in a quantum sensor network. To address this problem, we highlight a generalization of the sensor symmetric performance bounds of Rubio e t. al. [J. Phys. A: Math. Theor. 53 344001 (2020)] and develop a new optimized sequential protocol for measuring such functions. We compare the performance of both approaches to one another and to local protocols that do not utilize quantum entanglement, emphasizing the geometric significance of the coefficient vectors of the measured functions in determining the best choice of measurement protocol. We show that, in many cases, especially for a large number of sensors, the optimized sequential protocol results in more accurate measurements than the other strategies. In addition, in contrast to the the sensor symmetric approach, the sequential protocol is known to always be explicitly implementable. The sequential protocol is very general and has a wide range of metrological applications.
We study functions of bounded variation (and sets of finite perimeter) on a convex open set $Omegasubseteq X$, $X$ being an infinite dimensional real Hilbert space. We relate the total variation of such functions, defined through an integration by pa rts formula, to the short-time behaviour of the semigroup associated with a perturbation of the Ornstein--Uhlenbeck operator.
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for o perator convex functions on bounded intervals. More precisely, we prove that if $f$ is a nonlinear operator convex function on a bounded interval $(a,b)$ and $A, B$ are bounded linear operators acting on a Hilbert space with spectra in $(a,b)$ and $A-B$ is invertible, then $sf(A)+(1-s)f(B)>f(sA+(1-s)B)$. A short proof for a similar known result concerning a nonconstant operator monotone function on $[0,infty)$ is presented. Another purpose is to find a lower bound for $f(A)-f(B)$, where $f$ is a nonconstant operator monotone function, by using a key lemma. We also give an estimation of the Furuta inequality, which is an excellent extension of the Lowner--Heinz inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا