ترغب بنشر مسار تعليمي؟ اضغط هنا

Manipulating Coherent Light Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities

106   0   0.0 ( 0 )
 نشر من قبل Songyan Hou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong interactions between surface plasmons in ultra-compact nanocavities and excitons in two dimensional materials have attracted wide interests for its prospective realization of polariton devices at room temperature. Here, we propose a continuous transition from weak coupling to strong coupling between excitons in MoS2 monolayer and highly localized plasmons in ultra-compact nanoantenna. The nanoantenna is assembled by a silver nanocube positioned over a gold film and separated by a dielectric spacer layer. We observed a 1570-fold enhancement in the photoluminescence at weak coupling regime in hybrid nanocavities with thick spacer layers. The interaction between excitons and plasmons is then directly prompted to strong coupling regime by shrinking down the thickness of spacer layer. Room temperature formation of polaritons with Rabi splitting up to 190 meV was observed, which is the largest plasmon-exciton Rabi splitting reported in two dimensional materials. Numerical calculations quantified the relation between coupling strength, local density of states and spacer thickness, and revealed the transition between weak coupling and strong coupling in nanocavities. The findings in this work offer a guideline for feasible designs of plasmon-exciton interaction systems with gap plasmonic cavities.



قيم البحث

اقرأ أيضاً

Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic architectures for applications in quantum photonics and novel optoelectronic devices. We report the observation of non-local interactions of free trions, and s trong light-matter coupling of localized excitons in pristine hBN/MoS$_2$/hBN heterostructures coupled to single mode (Q $>10^4$) nanocavities. The excellent photonic and excitonic quality of the cavity and hBN encapsulated MoS$_2$ stem from our integrated nanofabrication approach that does not involve etching through the 2D heterostructure, but rather maximizes the local field amplitude within the MoS$_2$ monolayer. We observe a non-monotonic temperature dependence of the cavity-trion interaction strength, consistent with the non-local light-matter interactions in which the free trion diffuse over lengthscales comparable to the cavity mode volume. For an ensemble of localized excitons trapped at defects in the MoS$_2$, we observe strong light-matter coupling with a collective vacuum Rabi energy of $12.9pm0.8$ meV. Our approach can be generalized to other optically active 2D materials, opening the way towards harnessing novel light-matter interaction regimes for applications in quantum photonics.
Being motivated by recent achievements in the rapidly developing fields of optical bound states in the continuum (BICs) and excitons in monolayers of transition metal dichalcogenides, we analyze strong coupling between BICs in $rm Ta_2O_5$ periodic p hotonic structures and excitons in $rm WSe_2$ monolayers. We demonstrate that giant radiative lifetime of BICs allow to engineer the exciton-polariton lifetime enhancing it three orders of magnitude compared to a bare exciton. We show that maximal lifetime of hybrid light-matter state can be achieved at any point of $mathbf{k}$-space by shaping the geometry of the photonic structure. Our findings open new route for the realization of the moving exciton-polariton condensates with non-resonant pump and without the Bragg mirrors which is of paramount importance for polaritonic devices.
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculia r non-hydrogenic excitonic states, in which exciton-mediated optical nonlinearities are predicted to be enhanced as compared to their hydrogenic counterpart. To demonstrate this enhancement, we performed optical transmission spectroscopy of a MoSe$_2$ monolayer placed in the strong coupling regime with the mode of an optical microcavity, and analyzed the results quantitatively with a nonlinear input-output theory. We find an enhancement of both the exciton-exciton interaction and of the excitonic fermionic saturation with respect to realistic values expected in the hydrogenic picture. Such results demonstrate that unconventional excitons in MoSe$_2$ are highly favourable for the implementation of large exciton-mediated optical nonlinearities, potentially working up to room temperature.
Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) are of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe$_2$, and light-matter interactions modified by a zero-dimensional optical microcavity. We find robust spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (g-factor >20), exceeding the purely trionic splitting by over five times. Going further, we observe robust effective optical non-linearity arising from the highly non-linear behaviour of the valley-specific strong light-matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 to >10 meV. Our experiments lay the groundwork for engineering quantum-Hall-like phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic non-linearities rooted in many-body exciton-electron correlations.
Gold-mediated exfoliation of MoS2 has attracted considerable interest in the recent years. A strong interaction between MoS2 and Au facilitates preferential production of centimeter-sized monolayer MoS2 with near-unity yield and provides a heterostru cture system noteworthy from a fundamental standpoint. However, little is known about the detailed nature of the MoS2-Au interaction and its evolution with the MoS2 thickness. Here, we identify specific vibrational and binding energy fingerprints of such strong interaction using Raman and X-ray photoelectron spectroscopy, which indicate substantial strain and charge-transfer in monolayer MoS2. Near-field tip-enhanced Raman spectroscopy reveals heterogeneity of the MoS2-Au interaction at the nanoscale, reflecting the spatial non-conformity between the two materials. Far-field micro-Raman spectroscopy shows that this interaction is strongly affected by the roughness and cleanliness of the underlying Au. Our results elucidate the nature of the strong MoS2-Au interaction and provide guidance for strain and charge doping engineering of MoS2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا