ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light-matter coupling

109   0   0.0 ( 0 )
 نشر من قبل Thomas Lyons
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) are of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe$_2$, and light-matter interactions modified by a zero-dimensional optical microcavity. We find robust spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (g-factor >20), exceeding the purely trionic splitting by over five times. Going further, we observe robust effective optical non-linearity arising from the highly non-linear behaviour of the valley-specific strong light-matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 to >10 meV. Our experiments lay the groundwork for engineering quantum-Hall-like phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic non-linearities rooted in many-body exciton-electron correlations.



قيم البحث

اقرأ أيضاً

Theoretical work has suggested that monolayer MoS2 doped with Mn should behave as a two-dimensional dilute magnetic semiconductor, which would open up possibilities for spintronic applications, device physics, and novel ground states. The magnetic pr operties on Mn dopants in MoS2 are dependent on the mid-gap impurity states of said dopants as well as the sites of dopant incorporation and dopant concentration. In this work we use STM/STS to characterize multiple impurity types associated with Mn dopants in MoS2, and use ring features that appear in spectral maps due to tip-induced band bending to investigate the nature of the mid-gap impurity states. The doublet nature of the rings and comparison to DFT calculations show that the Mn states exhibit strong spin splitting which can be quantified. We used scanned MOKE experiments to extend these magnetization measurements from atomic scale to mm scales, and detect the spin susceptibility signal which increases with Mn concentration. These experiments show that single Mn atoms in MoS2 function as active unscreened magnetic moments in the TMD monolayer, and can be harnessed for spin physics applications and science.
We have measured circularly polarized photoluminescence in monolayer MoSe2 under perpendicular magnetic fields up to 10 T. At low doping densities, the neutral and charged excitons shift linearly with field strength at a rate of $mp$ 0.12 meV/T for e mission arising, respectively, from the K and K valleys. The opposite sign for emission from different valleys demonstrates lifting of the valley degeneracy. The magnitude of the Zeeman shift agrees with predicted magnetic moments for carriers in the conduction and valence bands. The relative intensity of neutral and charged exciton emission is modified by the magnetic field, reflecting the creation of field-induced valley polarization. At high doping levels, the Zeeman shift of the charged exciton increases to $mp$ 0.18 meV/T. This enhancement is attributed to many-body effects on the binding energy of the charged excitons.
Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMD) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 18 meV/T for monolayer WS2, using the proximity effect from a ferromagnetic EuS substrate, which is enhanced by nearly two orders of magnitude from the 0.2 meV/T obtained by an external magnetic field. More interestingly, a sign reversal of the valley exciton splitting is observed as compared to that of WSe2 on EuS. Using first principles calculations, we investigate the complex behavior of exchange interactions between TMDs and EuS, that is qualitatively different from the Zeeman effect. The sign reversal is attributed to competing ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions for Eu- and S- terminated EuS surface sites. They act differently on the conduction and valence bands of WS2 compared to WSe2. Tuning the sign and magnitude of the valley exciton splitting offers opportunities for versatile control of valley pseudospin for quantum information processing.
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculia r non-hydrogenic excitonic states, in which exciton-mediated optical nonlinearities are predicted to be enhanced as compared to their hydrogenic counterpart. To demonstrate this enhancement, we performed optical transmission spectroscopy of a MoSe$_2$ monolayer placed in the strong coupling regime with the mode of an optical microcavity, and analyzed the results quantitatively with a nonlinear input-output theory. We find an enhancement of both the exciton-exciton interaction and of the excitonic fermionic saturation with respect to realistic values expected in the hydrogenic picture. Such results demonstrate that unconventional excitons in MoSe$_2$ are highly favourable for the implementation of large exciton-mediated optical nonlinearities, potentially working up to room temperature.
Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moire potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 hetero-bilayer with a 60-degree twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K valleys, a result of the large Lande g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ~ 10.7 and ~ 15.2, respectively, in good agreement with theoretical expectation. The PL from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation, with the valley polarization of the singlet interlayer exciton approaches unity at ~ 20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا