ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the Photon-Plasmon Coupling Phase

63   0   0.0 ( 0 )
 نشر من قبل Akbar Safari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Akbar Safari




اسأل ChatGPT حول البحث

Scattering processes have played a crucial role in the development of quantum theory. In the field of optics, scattering phase shifts have been utilized to unveil interesting forms of light-matter interactions. Here, we investigate the mode-coupling phase of single photons to surface plasmon polaritons in a quantum plasmonic tritter. We observe that the coupling process induces a phase jump that occurs when photons scatter into surface plasmons and vice versa. This interesting coupling phase dynamics is of particular relevance for quantum plasmonic experiments. Furthermore, it is demonstrated that this photon-plasmon interaction can be modeled through a quantum-mechanical tritter. We show that the visibility of a double-slit and a triple-slit interference patterns are convenient observables to characterize the interaction at a slit and determine the coupling phase. Our accurate and simple model of the interaction, validated by simulations and experiments, has important implications not only for quantum plasmonic interference effects, but is also advantageous to classical applications.



قيم البحث

اقرأ أيضاً

354 - Lulu Ye , Weidong Zhang , Aiqin Hu 2021
Plasmon decay via the surface or interface is a critical process for practical energy conversion and plasmonic catalysis. However, the relationship between plasmon damping and the coupling between the plasmon and 2D materials is still unclear. The sp ectral splitting due to plasmon-exciton interaction impedes the conventional single-particle method to evaluate the plasmon damping rate by the spectral linewidth directly. Here, we investigated the interaction between a single gold nanorod (GNR) and 2D materials using the single-particle spectroscopy method assisted with in situ nanomanipulation technique by comparing scattering intensity and linewidth together. Our approach allows us to indisputably identify that the plasmon-exciton coupling in the GNR-WSe2 hybrid would induce plasmon damping. We can also isolate the contribution between the charge transfer channel and resonant energy transfer channel for the plasmon decay in the GNR-graphene hybrid by comparing that with thin hBN layers as an intermediate medium to block the charge transfer. We find out that the contact layer between the GNR and 2D materials contributes most of the interfacial plasmon damping. These findings contribute to a deep understanding of interfacial excitonic effects on the plasmon and 2D materials hybrid.
299 - Aiqin Hu , Weidong Zhang , Lulu Ye 2021
The phase delay of a local electric field, being well-known in plasmonic nanostructures, has seldom been investigated to modulate the plasmon-exciton interaction. Here, with the single-particle spectroscopy method, we experimentally investigate the p hase effect in plasmon-exciton coupling systems consisting of monolayer WSe2 and an individual gold nanorod. The local plasmon phase delay is tuned by adopting various nanorods with different resonant energies respective to the exciton. We find that the local plasmon phase delay between the excitons and the plasmonic modes is as equally essential as the amplitude. The phase delay modulates the plasmon-exciton coupling considerably, resulting in an asymmetric spectral line-shape due to the interference behavior. There is an excellent agreement for the phase delay between the numerically calculated near-field phase distribution and the experimental results. The local phase delay can act as an effective way to modulate the properties of plexcitonic coupling at the nanoscale, which may have potential applications in nanoscale sensing, solar energy devices, and enhancing nonlinear processes.
Plasmonic sensing is an established technology for real-time biomedical diagnostics and air-quality monitoring. While intensity and wavelength tracking are the most commonly used interrogation methods for Surface Plasmon Resonance (SPR), several work s indicate the potential superiority of phase interrogation in detection sensitivity. Here, we theoretically and numerically establish the link between ultra-high sensitivities in phase interrogation SPR sensors and the critical coupling condition. However, reaching this condition requires a technically infeasible angstrom-level precision in the metal layer thickness. We propose a robust solution to overcome this limitation by coupling the SPR with a phase-change material (PCM) thin film. By exploiting the multilevel reconfigurable phase states of PCM, we theoretically demonstrate ultra-high phase sensitivities with a limit of detection as low as $10^{-10}$ refractive index unit (RIU). Such a PCM-assisted SPR sensor platform paves the way for unprecedented sensitivity sensors for the detection of trace amounts of low molecular weight species in biomedical sensing and environmental monitoring.
115 - Yuntian Chen , Peter Lodahl , 2010
We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitt er into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication.
Controlling the directionality of surface plasmon polaritons (SPPs) has been widely studied, while the direction of SPPs was always switched by orthogonal polarizations in the reported methods. Here, we present a scheme to control the directionality of SPPs by arbitrary spin polarizations. Extremely, the device can split two quite adjacent polarization components to two opposite directions. The versatility of the presented design scheme can offer opportunities for polarization sensing, polarization splitting and polarization-controlled plasmonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا