ترغب بنشر مسار تعليمي؟ اضغط هنا

A Se vacancy induced localized Raman mode in two-dimensional MoSe2 grown by CVD

307   0   0.0 ( 0 )
 نشر من قبل Shudong Zhao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Defects play a significant role in optical properties of semiconducting two-dimensional transition metal dichalcogenides (TMDCs). In ultra-thin MoSe2, a remarkable feature at ~250 cm-1 in Raman spectra is ascribed to be a defect-related mode. Recent attempts failed to explain the origin of this peak, leaving it being a mystery. Here in this work, we demonstrate that this peak is a Se vacancy induced defect mode. Heat effect and hydrogen etching are two main factors to introduce Se vacancies in CVD process of growing MoSe2. A phonon confinement model can well explain the behaviors of intrinsic Raman modes. Density functional theory (DFT) calculation reveals that single Se vacancy (VSe) is responsible for the appearance of Raman peak at ~250 cm-1 and this mode is an A1g-like localized mode which is also confirmed by polarized Raman scattering experiment. The relative strength of this mode can be a characterization of the quality of 2D MoSe2. This work may offer a simple method to tailor chalcogenide vacancies in 2D TMDCs and provide a way to study their vibrational properties.



قيم البحث

اقرأ أيضاً

Transition metal dichalcogenides (TMDs) have recently attracted attention due to their interesting electronic and optical properties. Fabrication of these materials in a reliable and facile method is important for future applications, as are methods to characterize material quality. Here we present the chemical vapor deposition of MoSe2 monolayer and few layer crystals. These results show the practicality of using chemical vapor deposition to reliably fabricate these materials. Low frequency Raman spectra and mapping of shear and layer breathing modes of MoSe2 are presented for the first time. We correlate the behavior of these modes with layer number in the materials. The usefulness of low frequency Raman mapping to probe the symmetry, quality, and monolayer presence in CVD grown 2D materials is emphasized.
Through a combination of monitoring the Raman spectral characteristics of 2D materials grown on copper catalyst layers, and wafer scale automated detection of the fraction of transferred material, we reproducibly achieve transfers with over 97.5% mon olayer hexagonal boron nitride and 99.7% monolayer graphene coverage, for up to 300 mm diameter wafers. We find a strong correlation between the transfer coverage obtained for graphene and the emergence of a lower wavenumber 2D- peak component, with the concurrent disappearance of the higher wavenumber 2D+ peak component during oxidation of the catalyst surface. The 2D peak characteristics can therefore act as an unambiguous predictor of the success of the transfer. The combined monitoring and transfer process presented here is highly scalable and amenable for roll-to-roll processing.
172 - Haifeng Wang , Erfu Liu , Yu Wang 2017
With unique distorted 1T structure and the associated in-plane anisotropic properties, mono- and few-layer ReX2 (X=S, Se) have recently attracted particular interest. Based on experiment and first-principles calculations, we investigate the fracture behavior of ReX2. We find that the cleaved edges of ReX2 flakes usually form an angle of ~120{deg} or ~60{deg}. In order to understand such phenomenon, we perform comprehensive investigations on the uniaxial tensile stress-strain relation of monolayer and multi-layer ReX2 sheets. Our numerical calculation shows that the particular cleaved edges of ReX2 flakes are caused by unique anisotropic ultimate tensile strengths and critical strains. We also calculate the stress-strain relation of WTe2, which explains why their cleaved edges are not corresponding to the principle axes. Our proposed mechanism about the fracture angle has also been supported by the calculated cleavage energies and surface energies for different edge surfaces.
Notwithstanding numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluori nation of graphene sheets in Bernal (AB)-stacked bilayer graphene (AB-BLG) grown by chemical vapor deposition on a single crystal CuNi(111) surface triggers the formation of interlayer carbon-carbon bonds, resulting in a fluorinated diamond monolayer (F-diamane). Induced by fluorine chemisorption, the phase transition from AB-BLG to single layer diamond was studied and verified by X-ray photoelectron, ultraviolet photoelectron, Raman, UV-Vis, electron energy loss spectroscopies, transmission electron microscopy, and DFT calculations.
Probing phonons, quasi-particle excitations and their coupling has enriched our understanding of these 2D materials and proved to be crucial for developing their potential applications. Here, we report comprehensive temperature, 4-330 K, and polariza tion-dependent Raman measurements on mono and bilayer MoSe2. Phonons modes up to fourth-order are observed including forbidden Raman and IR modes, understood considering Frohlich mechanism of exciton-phonon coupling. Most notably, anomalous variations in the phonon linewidths with temperature pointed at the significant role of electron-phonon coupling in these systems, especially for the out-of-plane (A1g) and shear mode (E22g), which is found to be more prominent in the narrow-gaped bilayer than the large gapped monolayer. Via polarization-dependent measurements, we deciphered the ambiguity in symmetry assignments, especially to the peaks around ~ 170 cm-1 and ~ 350 cm-1. Temperature-dependent thermal expansion coefficient, an important parameter for the device performance, is carefully extracted for both mono and bilayer by monitoring the temperature-dependence of the real-part of the phonon self-energy parameter. Our temperature-dependent in-depth Raman studies provide a pave for uncovering the deeper role of phonons in these 2D layered materials from a fundamental as well as application point of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا