ترغب بنشر مسار تعليمي؟ اضغط هنا

One Dimensional Nearly Free Electron States in Borophene

110   0   0.0 ( 0 )
 نشر من قبل Lan Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional boron (borophene) is featured by its structural polymorphs and distinct in-plane anisotropy, opening opportunities to achieve tailored electronic properties by intermixing different phases. Here, using scanning tunneling spectroscopy combined with first-principles calculations, delocalized one-dimensional nearly free electron states (NFE) in the (2,3) or b{eta}12 borophene sheet on the Ag(111) surface were observed. The NFE states emerge from a line defect in the borophene, manifested as a structural unit of the (2,2) or c{hi}3 sheet, which creates an in-plane potential well that shifts the states toward the Fermi level. The NFE states are held in the 2D plane of borophene, rather than in the vacuum region as observed in other nanostructures. Furthermore the borophene can provide a rare prototype to further study novel NFE behaviors, which may have potential applications on transport or field emission nanodevices based on boron.



قيم البحث

اقرأ أيضاً

Using a set of first-principles calculations, we studied the electronic structures of two-dimensional transition metal carbides and nitrides, so called MXenes, functionalized with F, O, and OH. Our projected band structures and electron localization function analyses reveal the existence of nearly free electron (NFE) states in variety of MXenes. The NFE states are spatially located just outside the atomic structure of MXenes and are extended parallel to the surfaces. Moreover, we found that the OH-terminated MXenes offer the NFE states energetically close to the Fermi level. In particular, the NFE states in some of the OH-terminated MXenes, such as Ti2C(OH)2, Zr2C(OH)2, Zr2N(OH)2, Hf2C(OH)2, Hf2N(OH)2, Nb2C(OH)2, and Ta2C(OH)2, are partially occupied. This is in remarkable contrast to graphene, graphane, and MoS2, in which their NFE states are located far above the Fermi level and thus they are unoccupied. As a prototype of such systems, we investigated the electron transport properties of Hf2C(OH)2 and found that the NFE states in Hf2C(OH)2 provide almost perfect transmission channels without nuclear scattering for electron transport. Our results indicate that these systems might find applications in nanoelectronic devices. Our findings provide new insights into the unique electronic band structures of MXenes.
Nearly free electron (NFE) state is an important kind of unoccupied state in low dimensional systems. Although it is intensively studied, a clear picture on its physical origin and its response behavior to external perturbations is still not availabl e. Our systematic first-principles study based on graphene nanoribbon superlattices suggests that there are actually two kinds of NFE states, which can be understood by a simple Kronig-Penney potential model. An atom-scattering-free NFE transport channel can be obtained via electron doping, which may be used as a conceptually new field effect transistor.
330 - Qiaohong Liu , Zhenyu Li , 2010
Nearly free electron (NFE) state has been widely studied in low dimensional systems. Based on first-principles calculations, we identify two types of NFE states in graphane nanoribbon superlattice, similar to those of graphene nanoribbons and boron n itride nanoribbons. Effect of electron doping on the NFE states in graphane nanoribbon superlattice has been studied, and it is possible to open a vacuum transport channel via electron doping.
Using field-emission resonance spectroscopy with an ultrahigh vacuum scanning tunneling microscope, we reveal Stark-shifted image-potential states of the v_1/6 and v_1/5 borophene polymorphs on Ag(111) with long lifetimes, suggesting high borophene l attice and interface quality. These image-potential states allow the local work function and interfacial charge transfer of borophene to be probed at the nanoscale and test the widely employed self-doping model of borophene. Supported by apparent barrier height measurements and density functional theory calculations, electron transfer doping occurs for both borophene phases from the Ag(111) substrate. In contradiction with the self-doping model, a higher electron transfer doping level occurs for denser v_1/6 borophene compared to v_1/5 borophene, thus revealing the importance of substrate effects on borophene electron transfer.
Honeycomb structures of group IV elements can host massless Dirac fermions with non-trivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monola yer structures. We present a detailed investigation of the beta 12 boron sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the beta 12-sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا