ﻻ يوجد ملخص باللغة العربية
Using a set of first-principles calculations, we studied the electronic structures of two-dimensional transition metal carbides and nitrides, so called MXenes, functionalized with F, O, and OH. Our projected band structures and electron localization function analyses reveal the existence of nearly free electron (NFE) states in variety of MXenes. The NFE states are spatially located just outside the atomic structure of MXenes and are extended parallel to the surfaces. Moreover, we found that the OH-terminated MXenes offer the NFE states energetically close to the Fermi level. In particular, the NFE states in some of the OH-terminated MXenes, such as Ti2C(OH)2, Zr2C(OH)2, Zr2N(OH)2, Hf2C(OH)2, Hf2N(OH)2, Nb2C(OH)2, and Ta2C(OH)2, are partially occupied. This is in remarkable contrast to graphene, graphane, and MoS2, in which their NFE states are located far above the Fermi level and thus they are unoccupied. As a prototype of such systems, we investigated the electron transport properties of Hf2C(OH)2 and found that the NFE states in Hf2C(OH)2 provide almost perfect transmission channels without nuclear scattering for electron transport. Our results indicate that these systems might find applications in nanoelectronic devices. Our findings provide new insights into the unique electronic band structures of MXenes.
Nearly free electron (NFE) state is an important kind of unoccupied state in low dimensional systems. Although it is intensively studied, a clear picture on its physical origin and its response behavior to external perturbations is still not availabl
Nearly free electron (NFE) state has been widely studied in low dimensional systems. Based on first-principles calculations, we identify two types of NFE states in graphane nanoribbon superlattice, similar to those of graphene nanoribbons and boron n
Two-dimensional boron (borophene) is featured by its structural polymorphs and distinct in-plane anisotropy, opening opportunities to achieve tailored electronic properties by intermixing different phases. Here, using scanning tunneling spectroscopy
The transition metal carbides (namely MXenes) and their functionalized derivatives exhibit various physical and chemical characteristics and offer many potential applications in electronic devices and sensors. Using density functional theory (DFT), i
Interactions of two-dimensional MXene sheets and electron beam of (scanning) transmission electron microscope are studied via first-principles calculations. We simulated the knock-on displacement threshold for Ti$_3$C$_2$ MXene sheet via ab initio mo