ترغب بنشر مسار تعليمي؟ اضغط هنا

Astro2020 science white paper: The gravitational wave view of massive black holes

98   0   0.0 ( 0 )
 نشر من قبل Kelly Holley-Bockelmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coalescing, massive black-hole (MBH) binaries are the most powerful sources of gravitational waves (GWs) in the Universe, which makes MBH science a prime focus for ongoing and upcoming GW observatories. The Laser Interferometer Space Antenna (LISA) -- a gigameter scale space-based GW observatory -- will grant us access to an immense cosmological volume, revealing MBHs merging when the first cosmic structures assembled in the Dark Ages. LISA will unveil the yet unknown origin of the first quasars, and detect the teeming population of MBHs of $10^4 - 10^7$ solar masses. forming within protogalactic halos. The Pulsar Timing Array, a galactic-scale GW survey, can access the largest MBHs the Universe, detecting the cosmic GW foreground from inspiraling MBH binaries of about 10^9 solar masses. LISA can measure MBH spins and masses with precision far exceeding that from electromagnetic (EM) probes, and together, both GW observatories will provide the first full census of binary MBHs, and their orbital dynamics, across cosmic time. Detecting the loud gravitational signal of these MBH binaries will also trigger alerts for EM counterpart searches, from decades (PTAs) to hours (LISA) prior to the final merger. By witnessing both the GW and EM signals of MBH mergers, precious information will be gathered about the rich and complex environment in the aftermath of a galaxy collision. The unique GW characterization of MBHs will shed light on the deep link between MBHs of $10^4-10^{10}$ solar masses and the grand design of galaxy assembly, as well as on the complex dynamics that drive MBHs to coalescence.



قيم البحث

اقرأ أيضاً

Supermassive black holes are located at the center of most, if not all, massive galaxies. They follow close correlations with global properties of their host galaxies (scaling relations), and are thought to play a crucial role in galaxy evolution. Ye t, we lack a complete understanding of fundamental aspects of their growth across cosmic time. In particular, we still do not understand: (1) whether black holes or their host galaxies grow faster and (2) what is the maximum mass that black holes can reach. The high angular resolution capability and sensitivity of 30-m class telescopes will revolutionize our understanding of the extreme end of the black hole and galaxy mass scale. With such facilities, we will be able to dynamically measure masses of the largest black holes and characterize galaxy properties out to redshift $z sim 1.5$. Together with the evolution of black hole-galaxy scaling relations since $z sim 1.5$, the maximum mass black hole will shed light on the main channels of black hole growth.
Black holes in binary star systems are vital for understanding the process of pr oducing gravitational wave sources, understanding how supernovae work, and for p roviding fossil evidence for the high mass stars from earlier in the Universe. At the pr esent time, sample sizes of these objects, and especially of black hole s in binaries, are quite limited. Furthermore, more precise measurements of the binary parameters are needed, as well. With improvements primarily in X-ray an d radio astronomy capabilities, it should be possible to build much larger sampl es of much better measured black hole binaries.
GHz radio astronomy has played a fundamental role in the recent dazzling discovery of GW170817, a neutron star (NS)-NS merger observed in both gravitational waves (GWs) and light at all wavelengths. Here we show how the expected progress in sensitivi ty of ground-based GW detectors over the next decade calls for U.S.-based GHz radio arrays to be improved beyond current levels. We discuss specifically how several new scientific opportunities would emerge in multi-messenger time-domain astrophysics if a next generation GHz radio facility with sensitivity and resolution $10times$ better than the current Jansky Very Large Array (VLA) were to work in tandem with ground-based GW detectors. These opportunities include probing the properties, structure, and size of relativistic jets and wide-angle ejecta from NS-NS mergers, as well as unraveling the physics of their progenitors via host galaxy studies.
Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of low frequency gravitational wave radiation, which makes them ideal calibrators for the gravitational low-frequency wave detector LISA mission. However, current theoretical evolution models still fail to explain the observed properties of the known populations of white dwarfs in both interacting and detached binaries. Major limitations are that the existing population models have generally been developed to explain the properties of sub-samples of these systems, occupying small volumes of the vast parameter space, and that the observed samples are severely biased. The overarching goal for the next decade is to assemble a large and homogeneous sample of white dwarf binaries that spans the entire range of evolutionary states, to obtain precise measurements of their physical properties, and to further develop the theory to satisfactorily reproduce the properties of the entire population. While ongoing and future all-sky high- and low-resolution optical spectroscopic surveys allow us to enlarge the sample of these systems, high-resolution ultraviolet spectroscopy is absolutely essential for the characterization of the white dwarfs in these binaries. The Hubble Space Telescope is currently the only facility that provides ultraviolet spectroscopy, and with its foreseeable demise, planning the next ultraviolet mission is of utmost urgency.
84 - Alexander P. Ji 2019
Nearby dwarf galaxies are local analogues of high-redshift and metal-poor stellar populations. Most of these systems ceased star formation long ago, but they retain signatures of their past that can be unraveled by detailed study of their resolved st ars. Archaeological examination of dwarf galaxies with resolved stellar spectroscopy provides key insights into the first stars and galaxies, galaxy formation in the smallest dark matter halos, stellar populations in the metal-free and metal-poor universe, the nature of the first stellar explosions, and the origin of the elements. Extremely large telescopes with multi-object R=5,000-30,000 spectroscopy are needed to enable such studies for galaxies of different luminosities throughout the Local Group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا