ﻻ يوجد ملخص باللغة العربية
This paper carries out a large dimensional analysis of a variation of kernel ridge regression that we call emph{centered kernel ridge regression} (CKRR), also known in the literature as kernel ridge regression with offset. This modified technique is obtained by accounting for the bias in the regression problem resulting in the old kernel ridge regression but with emph{centered} kernels. The analysis is carried out under the assumption that the data is drawn from a Gaussian distribution and heavily relies on tools from random matrix theory (RMT). Under the regime in which the data dimension and the training size grow infinitely large with fixed ratio and under some mild assumptions controlling the data statistics, we show that both the empirical and the prediction risks converge to a deterministic quantities that describe in closed form fashion the performance of CKRR in terms of the data statistics and dimensions. Inspired by this theoretical result, we subsequently build a consistent estimator of the prediction risk based on the training data which allows to optimally tune the design parameters. A key insight of the proposed analysis is the fact that asymptotically a large class of kernels achieve the same minimum prediction risk. This insight is validated with both synthetic and real data.
Nystrom approximation is a fast randomized method that rapidly solves kernel ridge regression (KRR) problems through sub-sampling the n-by-n empirical kernel matrix appearing in the objective function. However, the performance of such a sub-sampling
The divide-and-conquer method has been widely used for estimating large-scale kernel ridge regression estimates. Unfortunately, when the response variable is highly skewed, the divide-and-conquer kernel ridge regression (dacKRR) may overlook the unde
Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which
In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal conv
Understanding generalization and estimation error of estimators for simple models such as linear and generalized linear models has attracted a lot of attention recently. This is in part due to an interesting observation made in machine learning commu