ﻻ يوجد ملخص باللغة العربية
We present a self-supervised learning approach for optical flow. Our method distills reliable flow estimations from non-occluded pixels, and uses these predictions as ground truth to learn optical flow for hallucinated occlusions. We further design a simple CNN to utilize temporal information from multiple frames for better flow estimation. These two principles lead to an approach that yields the best performance for unsupervised optical flow learning on the challenging benchmarks including MPI Sintel, KITTI 2012 and 2015. More notably, our self-supervised pre-trained model provides an excellent initialization for supervised fine-tuning. Our fine-tuned models achieve state-of-the-art results on all three datasets. At the time of writing, we achieve EPE=4.26 on the Sintel benchmark, outperforming all submitted methods.
We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to
In this paper, we propose a unified method to jointly learn optical flow and stereo matching. Our first intuition is stereo matching can be modeled as a special case of optical flow, and we can leverage 3D geometry behind stereoscopic videos to guide
Self-supervised representation learning is able to learn semantically meaningful features; however, much of its recent success relies on multiple crops of an image with very few objects. Instead of learning view-invariant representation from simple i
We propose a general framework for self-supervised learning of transferable visual representations based on Video-Induced Visual Invariances (VIVI). We consider the implicit hierarchy present in the videos and make use of (i) frame-level invariances
As a newly emerging unsupervised learning paradigm, self-supervised learning (SSL) recently gained widespread attention, which usually introduces a pretext task without manual annotation of data. With its help, SSL effectively learns the feature repr