ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanophotonic quantum storage at telecommunications wavelength

87   0   0.0 ( 0 )
 نشر من قبل Ioana Craiciu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum memories for light are important components for future long distance quantum networks. We present on-chip quantum storage of telecommunications band light at the single photon level in an ensemble of erbium-167 ions in an yttrium orthosilicate photonic crystal nanobeam resonator. Storage times of up to 10 $mu$s are demonstrated using an all-optical atomic frequency comb protocol in a dilution refrigerator under a magnetic field of 380 mT. We show this quantum storage platform to have high bandwidth, high fidelity, and multimode capacity, and we outline a path towards an efficient erbium-167 quantum memory for light.

قيم البحث

اقرأ أيضاً

We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiatio n, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.
We demonstrate heralded single photon generation in a CMOS-compatible silicon nanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonator optical waveguide (CROW) produced a large four-wave-mixing nonline arity coefficient gamma_eff ~4100 W^-1 m^-1 at telecommunications wavelengths. Spontaneous four-wave-mixing using a degenerate pump beam at 1549.6 nm created photon pairs at 1529.5 nm and 1570.5 nm with a coincidence-to-accidental ratio exceeding 20. A photon correlation measurement of the signal (1529.5 nm) photons heralded by the detection of the idler (1570.5 nm) photons showed antibunching with g^(2)(0) = 0.19 pm 0.03. The demonstration of a single photon source within a silicon platform holds promise for future integrated quantum photonic circuits.
63 - Ognjen Ilic 2020
Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch a nd deployment, represent a multifaceted set of challenges. The materials we engineer must not only meet these challenges, but they need to do so while keeping overall mass to a minimum and guaranteeing performance over long periods of time with no opportunity for repair. Nanophotonic materials -- materials that embody structural variations on a scale comparable to the wavelength of light -- offer opportunities for addressing some of these difficulties. Here, we examine how advances in nanophotonics and nanofabrication are enabling ultrathin and lightweight structures with unparalleled ability to shape light-matter interactions over a broad electromagnetic spectrum. From solar panels that can be fabricated in space to applications of light for propulsion, the next generation of lightweight and multifunctional photonic materials stands to both impact existing technologies and pave the way for new space technologies.
The realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. We demonstrate a method for interfacing neutral atom arrays with optical photons. In our approach, atomic qubits trapped in individually controlled optical tweezers are moved in and out of the near-field of a nanofabricated photonic crystal cavity. With this platform, we demonstrate full quantum control, efficient quantum non-destructive readout, and entanglement of atom pairs strongly coupled to the cavity. By encoding the qubits into long-lived states and employing dynamical decoupling, the entangled state is verified in free space after being transported away from the cavity. The combination of a compact, integrated optical link and entanglement transport paves the way for quantum networking with neutral atom quantum processors.
The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum informat ion and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا