ترغب بنشر مسار تعليمي؟ اضغط هنا

Telecommunications-band heralded single photons from a silicon nanophotonic chip

166   0   0.0 ( 0 )
 نشر من قبل Kartik Srinivasan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate heralded single photon generation in a CMOS-compatible silicon nanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonator optical waveguide (CROW) produced a large four-wave-mixing nonlinearity coefficient gamma_eff ~4100 W^-1 m^-1 at telecommunications wavelengths. Spontaneous four-wave-mixing using a degenerate pump beam at 1549.6 nm created photon pairs at 1529.5 nm and 1570.5 nm with a coincidence-to-accidental ratio exceeding 20. A photon correlation measurement of the signal (1529.5 nm) photons heralded by the detection of the idler (1570.5 nm) photons showed antibunching with g^(2)(0) = 0.19 pm 0.03. The demonstration of a single photon source within a silicon platform holds promise for future integrated quantum photonic circuits.



قيم البحث

اقرأ أيضاً

Operating reconfigurable quantum circuits with single photon sources is a key goal of photonic quantum information science and technology. We use an integrated waveguide device comprising of directional couplers and a reconfigurable thermal phase con troller to manipulate single photons emitted from a chromium related colour centre in diamond. Observation of both a wave-like interference pattern and particle-like sub-Poissionian autocorrelation functions demonstrates coherent manipulation of single photons emitted from the chromium related centre and verifies wave particle duality.
The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum informat ion and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.
A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high eff iciency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (>1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies.
Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single mode fiber. A switching efficiency of 97% is achieved with a $sim1.7$,ps switching time , and signal-to-noise ratio of $sim800$. Preservation of the quantum state is confirmed by measuring no significant increase in the second-order autocorrelation function $g^{(2)}(0)$. These values are attained with only nanojoule level pump energies that are produced by a laser oscillator with 80,MHz repetition rate. The results highlight a simple switching device capable of both high-bandwidth operations and preservation of single-photon properties for applications in photonic quantum processing and ultrafast time-gating or switching.
High visibility on-chip quantum interference among indistinguishable single-photons from multiples sources is a key prerequisite for integrated linear optical quantum computing. Resonant enhancement in micro-ring resonators naturally enables brighter , purer and more indistinguishable single-photon production without any tight spectral filtering. The indistinguishability of heralded single-photons from multiple micro-ring resonators has not been measured in any photonic platform. Here, we report on-chip indistinguishability measurements of heralded single-photons generated from independent micro-ring resonators by using an on-chip Mach-Zehnder interferometer and spectral demultiplexer. We measured the raw heralded two-photon interference fringe visibility as 72 +/- 3%. This result agrees with our model, which includes device imperfections, spectral impurity and multi-pair emissions. We identify multi-pair emissions as the main factor limiting the nonclassical interference visibility, and show a route towards achieving near unity visibility in future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا