ترغب بنشر مسار تعليمي؟ اضغط هنا

A massive nebula around the Luminous Blue Variable star RMC143 revealed by ALMA

65   0   0.0 ( 0 )
 نشر من قبل Claudia Agliozzo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The luminous blue variable (LBV) RMC143 is located in the outskirts of the 30~Doradus complex, a region rich with interstellar material and hot luminous stars. We report the $3sigma$ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. Both the extinction map and the SED are consistent with a dusty massive nebula with a dust mass of $0.055pm0.018~M_{odot}$ (assuming $kappa_{850}=1.7rm,cm^{2},g^{-1}$). To date, RMC143 has the most dusty LBV nebula observed in the Magellanic Clouds. We have also re-examined the LBV classification of RMC143 based on VLT/X-shooter spectra obtained in 2015/16 and a review of the publication record. The radiative transfer code CMFGEN is used to derive its fundamental stellar parameters. We find an effective temperature of $sim 8500$~K, luminosity of log$(L/L_{odot}) = 5.32$, and a relatively high mass-loss rate of $1.0 times 10^{-5}~M_{odot}$~yr$^{-1}$. The luminosity is much lower than previously thought, which implies that the current stellar mass of $sim8~M_{odot}$ is comparable to its nebular mass of $sim 5.5~M_{odot}$ (from an assumed gas-to-dust ratio of 100), suggesting that the star has lost a large fraction of its initial mass in past LBV eruptions or binary interactions. While the star may have been hotter in the past, it is currently not hot enough to ionize its circumstellar nebula. We propose that the nebula is ionized externally by the hot stars in the 30~Doradus star-forming region.

قيم البحث

اقرأ أيضاً

Far-infrared Herschel PACS imaging and spectroscopic observations of the nebula around the luminous blue variable (LBV) star AG Car have been obtained along with optical imaging in the Halpha+[NII] filter. In the infrared light, the nebula appears as a clumpy ring shell that extends up to 1.2 pc with an inner radius of 0.4 pc. It coincides with the Halpha nebula, but extends further out. Dust modeling of the nebula was performed and indicates the presence of large grains. The dust mass is estimated to be ~ 0.2 Msun. The infrared spectrum of the nebula consists of forbidden emission lines over a dust continuum. Apart from ionized gas, these lines also indicate the existence of neutral gas in a photodissociation region that surrounds the ionized region. The abundance ratios point towards enrichment by processed material. The total mass of the nebula ejected from the central star amounts to ~ 15 Msun, assuming a dust-to-gas ratio typical of LBVs. The abundances and the mass-loss rate were used to constrain the evolutionary path of the central star and the epoch at which the nebula was ejected, with the help of available evolutionary models. This suggests an ejection during a cool LBV phase for a star of ~ 55 Msun with little rotation.
95 - L. Cerrigone 2013
MWC 930 is a star just ~2{deg} above the Galactic plane whose nature is not clear and that has not been studied in detail so far. While a post-Asymptotic Giant Branch (AGB) classification was proposed in the past, studies of its optical spectrum and photometry pointed toward strong variability, therefore the object was reclassified as a Luminous Blue Variable (LBV) candidate. LBVs typically undergo phases of strong mass loss in the form of eruptions that can create shells of ejecta around the star. Our goal is to search for the presence of such a circumstellar nebula in MWC 930 and investigate its properties. To do so, we make use of space-based infrared data from our Spitzer campaign performed with the InfraRed Array Camera (IRAC) and the InfraRed Spectrograph (IRS) as well as data from optical and infrared (IR) surveys. In our Spitzer images, we clearly detect an extended shell around MWC 930 at wavelengths longer than 5 um. The mid-infrared spectrum is dominated by the central star and mostly shows forbidden lines of [FeII], with an underlying continuum that decreases with wavelength up to ~15 um and then inverts its slope, displaying a second peak around 60 um, evidence for cold dust grains formed in a past eruption. By modeling the SED, we identify two central components, besides the star and the outer shell. These extra sources of radiation are interpreted as material close to the central star, maybe due to a recent ejection. Features of C-bearing molecules or grains are not detected.
94 - Ioana Boian , Jose Groh 2017
In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post -explosion behaviour. They seem to belong to a class of events for which the fate as a genuine core-collapse supernova or a non-terminal explosion is still under debate. Our CMFGEN models suggest that the progenitor of SN2015bh had an effective temperature between 8700 and 10000 K, luminosity in the range ~ 1.8-4.74e6 Lsun, contained at least 25% H in mass at the surface, and half-solar Fe abundances. The results also show that the progenitor of SN 2015bh generated an extended wind with a mass-loss rate of ~ 6e-4 to 1.5e-3 Msun/yr and a velocity of 1000 km/s. We determined that the wind extended to at least 2.57e14 cm and lasted for at least 30 days prior to the observations, releasing 5e-5 Msun into the circumstellar medium. In analogy to 2009ip, we propose that this is the material that the explosive ejecta could interact at late epochs, perhaps producing observable signatures that can be probed with future observations. We conclude that the progenitor of SN 2015bh was most likely a warm luminous blue variable of at least 35 Msun before the explosion. Considering the high wind velocity, we cannot exclude the possibility that the progenitor was a Wolf-Rayet star that inflated just before the 2013 eruption, similar to HD5980 during its 1994 episode. If the star survived, late-time spectroscopy may reveal either a similar LBV or a Wolf-Rayet star, depending on the mass of the H envelope before the explosion. If the star exploded as a genuine SN, 2015bh would be a remarkable case of a successful explosion after black-hole formation in a star with a possible minimum mass 35 Msun at the pre-SN stage.
In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spect roscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011--2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009--2011 this star has brightened by approx 0.9 and 1 mag in the V and I_c bands, respectively, then faded by approx 1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and suggest that this star might have been ejected either from a putative star cluster embedded in the HII region IRAS 16455-4531 or the young massive star cluster Westerlund 1.
We investigate the effects of mass loss during the main-sequence (MS) and post-MS phases of massive star evolution on black hole (BH) birth masses. We compute solar metallicity Geneva stellar evolution models of an 85 $M_{odot}$ star with mass-loss r ate ($dot{M}$) prescriptions for MS and post-MS phases and analyze under which conditions such models could lead to very massive BHs. Based on the observational constraints for $dot{M}$ of luminous stars, we discuss two possible scenarios that could produce massive BHs at high metallicity. First, if a massive BH progenitor evolves from the observed population of massive MS stars known as WNh stars, we show that its average post-MS mass-loss rate has to be less than $1,times10^{-5},M_{odot}$/yr. However, this is lower than the typical observed mass-loss rates of luminous blue variables (LBV). Second, a massive BH progenitor could evolve from a yet undetected population of $80-85$ $M_{odot}$ stars with strong surface magnetic fields, which could quench mass loss during the evolution. In this case, the average mass-loss rate during the post-MS LBV phase has to be less than $5,times10^{-5},M_{odot}$/yr to produce 70 $M_{odot}$ BHs. We suggest that LBVs that explode as SNe have large envelopes and small cores that could be prone to explosion, possibly evolving from binary interaction (either mergers or mass gainers that do not fully mix). Conversely, LBVs that directly collapse to BHs could have evolve from massive single stars or binary-star mergers that fully mix, possessing large cores that would favor BH formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا