ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite symmetric tensor categories with the Chevalley property in characteristic $2$

104   0   0.0 ( 0 )
 نشر من قبل Shlomo Gelaki
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove an analog of Delignes theorem for finite symmetric tensor categories $mathcal{C}$ with the Chevalley property over an algebraically closed field $k$ of characteristic $2$. Namely, we prove that every such category $mathcal{C}$ admits a symmetric fiber functor to the symmetric tensor category $mathcal{D}$ of representations of the triangular Hopf algebra $(k[dd]/(dd^2),1ot 1 + ddot dd)$. Equivalently, we prove that there exists a unique finite group scheme $G$ in $mathcal{D}$ such that $mathcal{C}$ is symmetric tensor equivalent to $Rep_{mathcal{D}}(G)$. Finally, we compute the group $H^2_{rm inv}(A,K)$ of equivalence classes of twists for the group algebra $K[A]$ of a finite abelian $p$-group $A$ over an arbitrary field $K$ of characteristic $p>0$, and the Sweedler cohomology groups $H^i_{rm{Sw}}(mathcal{O}(A),K)$, $ige 1$, of the function algebra $mathcal{O}(A)$ of $A$.



قيم البحث

اقرأ أيضاً

We prove that every finite symmetric integral tensor category $mathcal{C}$ with the Chevalley property over an algebraically closed field $k$ of characteristic $p>2$ admits a symmetric fiber functor to $text{sVec}$. This proves Ostriks conjecture cit e[Conjecture 1.3]{o} in this case. Equivalently, we prove that there exists a unique finite supergroup scheme $mathcal{G}$ over $k$ and a grouplike element $epsilonin k[mathcal{G}]$ of order $le 2$, whose action by conjugation on $mathcal{G}$ coincides with the parity automorphism of $mathcal{G}$, such that $mathcal{C}$ is symmetric tensor equivalent to $Rep(mathcal{G},epsilon)$. In particular, when $mathcal{C}$ is unipotent, the functor lands in $Vect$, so $mathcal{C}$ is symmetric tensor equivalent to $Rep(U)$ for a unique finite unipotent group scheme $U$ over $k$. We apply our result and the results of cite{g} to classify certain finite dimensional triangular Hopf algebras with the Chevalley property over $k$ (e.g., local), in group scheme-theoretical terms. Finally, we compute the Sweedler cohomology of restricted enveloping algebras over an algebraically closed field $k$ of characteristic $p>0$, classify associators for their duals, and study finite dimensional (not necessarily triangular) local quasi-Hopf algebras and finite (not necessarily symmetric) unipotent tensor categories over an algebraically closed field $k$ of characteristic $p>0$. The appendix by K. Coulembier and P. Etingof gives another proof of the above classification results using the recent paper cite{Co}, and, more generally, shows that the maximal Tannakian and super-Tannakian subcategory of a symmetric tensor category over a field of characteristic $ e 2$ is always a Serre subcategory.
This is an expanded version of the notes by the second author of the lectures on symmetric tensor categories given by the first author at Ohio State University in March 2019 and later at ICRA-2020 in November 2020. We review some aspects of the curre nt state of the theory of symmetric tensor categories and discuss their applications, including ones unavailable in the literature.
106 - Dave Benson , Pavel Etingof , 2020
We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $bf k$. If ${rm char}({bf k})=p>0$, we use this method to construct generalizations ${rm Ver}_{p^n}$, ${rm Ver}_ {p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(bf k)$ by the $n$-th Steinberg module, and ${rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(bf k)$-modules. We show that ${rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $mathbb{Z}[2cos(2pi/p^n)]$, and that ${rm Ver}_{p^n}$ embeds into ${rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $bf k$ admits a fiber functor to the union ${rm Ver}_{p^infty}$ of the nested sequence ${rm Ver}_{p}subset {rm Ver}_{p^2}subsetcdots$. This would provide an analog of Delignes theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${rm Ver}_p$.
76 - Sonia Natale 2018
We study exact sequences of finite tensor categories of the form $Rep G to C to D$, where $G$ is a finite group. We show that, under suitable assumptions, there exists a group $Gamma$ and mutual actions by permutations $rhd: Gamma times G to G$ and $ lhd: Gamma times G to Gamma$ that make $(G, Gamma)$ into matched pair of groups endowed with a natural crossed action on $D$ such that $C$ is equivalent to a certain associated crossed extension $D^{(G, Gamma)}$ of $D$. Dually, we show that an exact sequence of finite tensor categories $vect_G to C to D$ induces an $Aut(G)$-grading on $C$ whose neutral homogeneous component is a $(Z(G), Gamma)$-crossed extension of a tensor subcategory of $D$. As an application we prove that such extensions $C$ of $D$ are weakly group-theoretical fusion categories if and only if $D$ is a weakly group-theoretical fusion category. In particular, we conclude that every semisolvable semisimple Hopf algebra is weakly group-theoretical.
We describe graded commutative Gorenstein algebras ${mathcal E}_n(p)$ over a field of characteristic $p$, and we conjecture that $mathrm{Ext}^bullet_{mathsf{Ver}_{p^{n+1}}}(1,1)cong{mathcal E}_{n}(p)$, where $mathsf{Ver}_{p^{n+1}}$ are the new symmet ric tensor categories recently constructed in cite{Benson/Etingof:2019a,Benson/Etingof/Ostrik,Coulembier}. We investigate the combinatorics of these algebras, and the relationship with Mincs partition function, as well as possible actions of the Steenrod operations on them. Evidence for the conjecture includes a large number of computations for small values of $n$. We also provide some theoretical evidence. Namely, we use a Koszul construction to identify a homogeneous system of parameters in ${mathcal E}_n(p)$ with a homogeneous system of parameters in $mathrm{Ext}^bullet_{mathsf{Ver}_{p^{n+1}}}(1,1)$. These parameters have degrees $2^i-1$ if $p=2$ and $2(p^i-1)$ if $p$ is odd, for $1le i le n$. This at least shows that $mathrm{Ext}^bullet_{mathsf{Ver}_{p^{n+1}}}(1,1)$ is a finitely generated graded commutative algebra with the same Krull dimension as ${mathcal E}_n(p)$. For $p=2$ we also show that $mathrm{Ext}^bullet_{mathsf{Ver}_{2^{n+1}}}(1,1)$ has the expected rank $2^{n(n-1)/2}$ as a module over the subalgebra of parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا