ﻻ يوجد ملخص باللغة العربية
We prove that every finite symmetric integral tensor category $mathcal{C}$ with the Chevalley property over an algebraically closed field $k$ of characteristic $p>2$ admits a symmetric fiber functor to $text{sVec}$. This proves Ostriks conjecture cite[Conjecture 1.3]{o} in this case. Equivalently, we prove that there exists a unique finite supergroup scheme $mathcal{G}$ over $k$ and a grouplike element $epsilonin k[mathcal{G}]$ of order $le 2$, whose action by conjugation on $mathcal{G}$ coincides with the parity automorphism of $mathcal{G}$, such that $mathcal{C}$ is symmetric tensor equivalent to $Rep(mathcal{G},epsilon)$. In particular, when $mathcal{C}$ is unipotent, the functor lands in $Vect$, so $mathcal{C}$ is symmetric tensor equivalent to $Rep(U)$ for a unique finite unipotent group scheme $U$ over $k$. We apply our result and the results of cite{g} to classify certain finite dimensional triangular Hopf algebras with the Chevalley property over $k$ (e.g., local), in group scheme-theoretical terms. Finally, we compute the Sweedler cohomology of restricted enveloping algebras over an algebraically closed field $k$ of characteristic $p>0$, classify associators for their duals, and study finite dimensional (not necessarily triangular) local quasi-Hopf algebras and finite (not necessarily symmetric) unipotent tensor categories over an algebraically closed field $k$ of characteristic $p>0$. The appendix by K. Coulembier and P. Etingof gives another proof of the above classification results using the recent paper cite{Co}, and, more generally, shows that the maximal Tannakian and super-Tannakian subcategory of a symmetric tensor category over a field of characteristic $ e 2$ is always a Serre subcategory.
We prove an analog of Delignes theorem for finite symmetric tensor categories $mathcal{C}$ with the Chevalley property over an algebraically closed field $k$ of characteristic $2$. Namely, we prove that every such category $mathcal{C}$ admits a symme
This is an expanded version of the notes by the second author of the lectures on symmetric tensor categories given by the first author at Ohio State University in March 2019 and later at ICRA-2020 in November 2020. We review some aspects of the curre
We study exact sequences of finite tensor categories of the form $Rep G to C to D$, where $G$ is a finite group. We show that, under suitable assumptions, there exists a group $Gamma$ and mutual actions by permutations $rhd: Gamma times G to G$ and $
Let $W$ be a finite dimensional purely odd supervector space over $mathbb{C}$, and let $sRep(W)$ be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup $W$. We show that the set of equivalence clas
We consider the finite generation property for cohomology of a finite tensor category C, which requires that the self-extension algebra of the unit Ext*_C(1,1) is a finitely generated algebra and that, for each object V in C, the graded extension gro