ترغب بنشر مسار تعليمي؟ اضغط هنا

swTVM: Exploring the Automated Compilation for Deep Learning on Sunway Architecture

342   0   0.0 ( 0 )
 نشر من قبل Changxi Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The flourish of deep learning frameworks and hardware platforms has been demanding an efficient compiler that can shield the diversity in both software and hardware in order to provide application portability. Among the exiting deep learning compilers, TVM is well known for its efficiency in code generation and optimization across diverse hardware devices. In the meanwhile, the Sunway many-core processor renders itself as a competitive candidate for its attractive computational power in both scientific and deep learning applications. This paper combines the trends in these two directions. Specifically, we propose swTVM that extends the original TVM to support ahead-of-time compilation for architecture requiring cross-compilation such as Sunway. In addition, we leverage the architecture features during the compilation such as core group for massive parallelism, DMA for high bandwidth memory transfer and local device memory for data locality, in order to generate efficient code for deep learning application on Sunway. The experimental results show the ability of swTVM to automatically generate code for various deep neural network models on Sunway. The performance of automatically generated code for AlexNet and VGG-19 by swTVM achieves 6.71x and 2.45x speedup on average than hand-optimized OpenACC implementations on convolution and fully connected layers respectively. This work is the first attempt from the compiler perspective to bridge the gap of deep learning and high performance architecture particularly with productivity and efficiency in mind. We would like to open source the implementation so that more people can embrace the power of deep learning compiler and Sunway many-core processor.



قيم البحث

اقرأ أيضاً

Frameworks for writing, compiling, and optimizing deep learning (DL) models have recently enabled progress in areas like computer vision and natural language processing. Extending these frameworks to accommodate the rapidly diversifying landscape of DL models and hardware platforms presents challenging tradeoffs between expressivity, composability, and portability. We present Relay, a new compiler framework for DL. Relays functional, statically typed intermediate representation (IR) unifies and generalizes existing DL IRs to express state-of-the-art models. The introduction of Relays expressive IR requires careful design of domain-specific optimizations, addressed via Relays extension mechanisms. Using these extension mechanisms, Relay supports a unified compiler that can target a variety of hardware platforms. Our evaluation demonstrates Relays competitive performance for a broad class of models and devices (CPUs, GPUs, and emerging accelerators). Relays design demonstrates how a unified IR can provide expressivity, composability, and portability without compromising performance.
Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic int eractions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.
Deep learning has achieved impressive performance on many tasks in recent years. However, it has been found that it is still not enough for deep neural networks to provide only point estimates. For high-risk tasks, we need to assess the reliability o f the model predictions. This requires us to quantify the uncertainty of model prediction and construct prediction intervals. In this paper, We explore the uncertainty in deep learning to construct the prediction intervals. In general, We comprehensively consider two categories of uncertainties: aleatory uncertainty and epistemic uncertainty. We design a special loss function, which enables us to learn uncertainty without uncertainty label. We only need to supervise the learning of regression task. We learn the aleatory uncertainty implicitly from the loss function. And that epistemic uncertainty is accounted for in ensembled form. Our method correlates the construction of prediction intervals with the uncertainty estimation. Impressive results on some publicly available datasets show that the performance of our method is competitive with other state-of-the-art methods.
Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achievements such as Deepminds AlphaGo. It has been successfully deployed in commercial vehicles like Mobileyes path planning system. However, a vast maj ority of work on DRL is focused on toy examples in controlled synthetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss the challenges which must be addressed to enable further progress towards real-world deployment.
Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of do main experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter learning (AutoMHL), and automated deep learning (AutoDL). State-of-the-art techniques adopted in the three categories are presented, including Bayesian optimization, reinforcement learning, evolutionary algorithm, and gradient-based approaches. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا