ترغب بنشر مسار تعليمي؟ اضغط هنا

Primary beam effects of radio astronomy antennas -- II. Modelling the MeerKAT L-band beam

480   0   0.0 ( 0 )
 نشر من قبل Khan M. B. Asad
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After a decade of design and construction, South Africas SKA-MID precursor MeerKAT has begun its science operations. To make full use of the widefield capability of the array, it is imperative that we have an accurate model of the primary beam of its antennas. We have taken available L-band full-polarization astro-holographic observations of three antennas and a generic electromagnetic simulation and created sparse representations of the beams using principal components and Zernike polynomials. The spectral behaviour of the spatial coefficients has been modelled using discrete cosine transform. We have provided the Zernike-based model over a diameter of 10 deg averaged over the beams of three antennas in an associated software tool (EIDOS) that can be useful in direction-dependent calibration and imaging. The model is more accurate for the diagonal elements of the beam Jones matrix and at lower frequencies. As we get more accurate beam measurements and simulations in the future, especially for the cross-polarization patterns, our pipeline can be used to create more accurate sparse representations of MeerKAT beams.



قيم البحث

اقرأ أيضاً

Modern interferometric imaging relies on advanced calibration that incorporates direction-dependent effects. Their increasing number of antennas (e.g. in LOFAR, VLA, MeerKAT/SKA) and sensitivity are often tempered with the accuracy of their calibrati on. Beam accuracy drives particularly the capability for high dynamic range imaging (HDR - contrast > 1:$10^6$). The Radio Interferometric Measurement Equation (RIME) proposes a refined calibration framework for wide field of views (i.e. beyond the primary lobe and first null) using beam models. We have used holography data taken on 12 antennas of the Very Large Array (VLA) with two different approaches: a `data-driven representation derived from Principal Component Analysis (PCA) and a projection on the Zernike polynomials. We determined sparse representations of the beam to encode its spatial and spectral variations. For each approach, we compressed the spatial and spectral distribution of coefficients using low-rank approximations. The spectral behaviour was encoded with a Discrete Cosine Transform (DCT). We compared our modelling to that of the Cassbeam software which provides a parametric model of the antenna and its radiated field. We present comparisons of the beam reconstruction fidelity vs. `compressibility. We found that the PCA method provides the most accurate model. In the case of VLA antennas, we discuss the frequency ripple over L-band which is associated with a standing wave between antenna reflectors. The results are a series of coefficients that can easily be used `on-the-fly in calibration pipelines to generate accurate beams at low computing costs.
The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of each telescope relative to the average is small, with RMS differences of 1 percent of beam peak value. Holography provides images of dish illumination pattern, allowing characterization of as-built mirror surfaces. The ATA dishes can experience mm-scale distortions across -2 meter lengths due to mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at night and 3 mm under worst case solar illumination. For frequencies 4, 10, and 15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20 percent, respectively. The ATA.s exceptional wide-bandwidth permits observations over a continuous range 0.5 to 11.2 GHz, and future retrofits may increase this range to 15 GHz. Beam patterns show a slowly varying focus frequency dependence. We probe the antenna optical gain and beam pattern stability as a function of focus and observation frequency, concluding that ATA can produce high fidelity images over a decade of simultaneous observation frequencies. In the day, the antenna sensitivity and pointing accuracy are affected. We find that at frequencies greater than 5 GHz, daytime observations greater than 5 GHz will suffer some sensitivity loss and it may be necessary to make antenna pointing corrections on a 1 to 2 hourly basis.
This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of thi s series we developed a mathematical framework which enabled us to study the ghosting mechanism itself. An interesting concomitant of the second paper was that ghosts appear in symmetrical pairs. This could possibly account for spurious symmetrization. Spurious symmetrization refers to the appearance of a spurious source (the anti-ghost) symmetrically opposite an unmodelled source around a modelled source. The analysis in the first two papers indicates that the anti-ghost is usually very faint, in particular when a large number of antennas are used. This suggests that spurious symmetrization will mainly occur at an almost undetectable flux level. In this paper, we show that phase-only calibration produces an anti-ghost that is $N$-times (where $N$ denotes the number of antennas in the array) as bright as the one produced by phase and amplitude calibration and that this already bright ghost can be further amplified by the primary beam correction.
The Argentine Institute of Radio astronomy (IAR) is equipped with two single-dish 30mts radio antennas capable of performing daily observations of pulsars and radio transients in the southern hemisphere at 1.4 GHz. We aim to introduce to the internat ional community the upgrades performed and to show that IAR observatory has become suitable for investigations in numerous areas of pulsar radio astronomy, such as pulsar timing arrays, targeted searches of continuous gravitational waves sources, monitoring of magnetars and glitching pulsars, and studies of short time scale interstellar scintillation. We refurbished the two antennas at IAR to achieve high-quality timing observations. We gathered more than $1,000$ hours of observations with both antennas to study the timing precision and sensitivity they can achieve. We introduce the new developments for both radio telescopes at IAR. We present observations of the millisecond pulsar J0437$-$4715 with timing precision better than 1~$mu$s. We also present a follow-up of the reactivation of the magnetar XTE J1810--197 and the measurement and monitoring of the latest (Feb. 1st. 2019) glitch of the Vela pulsar (J0835--4510). We show that IAR is capable of performing pulsar monitoring in the 1.4 GHz radio band for long periods of time with a daily cadence. This opens the possibility of pursuing several goals in pulsar science, including coordinated multi-wavelength observations with other observatories. In particular, observations of the millisecond pulsar J0437$-$4715 will increase the gravitational wave sensitivity of the NANOGrav array in their current blind spot. We also show IARs great potential for studying targets of opportunity and transient phenomena such as magnetars, glitches, and fast-radio-burst sources.
Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore , understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of LOFAR in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C295 field. We have found that the model beam has errors of less than or equal to 10% on the predicted levels of leakage of ~1% within the field of view, i. e. if the leakage is taken out perfectly using this model the leakage will reduce to $10^{-3}$ of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا