ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis and modelling of the multi-wavelength observations of the luminous GRB 190114C

119   0   0.0 ( 0 )
 نشر من قبل Nissim Fraija
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very-high-energy (VHE; $geq 10$ GeV) photons are expected from the nearest and brightest Gamma-ray bursts (GRBs). VHE photons, at energies higher than 300 GeV, were recently reported by the MAGIC collaboration for this burst. Immediately, GRB 190114C was followed up by a massive observational campaign covering a large fraction of the electromagnetic spectrum. In this paper, we obtain the LAT light curve of GRB 190114C and show that it exhibits similar features to other bright LAT-detected bursts; the first high-energy photon ($geq$ 100 MeV) is delayed with the onset of the prompt phase and the flux light curve exhibits a long-lived emission (lasting much longer than the prompt phase) and a short-lasting bright peak (located at the beginning of long-lived emission). Analyzing the multi-wavelength observations, we show that the short-lasting LAT and GBM bright peaks are consistent with the synchrotron self-Compton reverse-shock model and the long-lived observations with the standard synchrotron forward-shock model that evolves from a stratified stellar-wind like medium to a uniform ISM-like medium. Given the best-fit values, a bright optical flash produced by synchrotron reverse-shock emission is expected. From our analysis we infer that the high-energy photons are produced in the deceleration phase of the outflow and some additional processes to synchrotron in the forward shocks should be considered to properly describe the LAT photons with energies beyond the synchrotron limit. Moreover, we claim that an outflow endowed with magnetic fields could describe the polarization and properties exhibited in the light curve of GRB 190114C.



قيم البحث

اقرأ أيضاً

We investigate the afterglow of GRB 140713A, a gamma-ray burst (GRB) that was detected and relatively well-sampled at X-ray and radio wavelengths, but was not present at optical and near-infrared wavelengths, despite searches to deep limits. We prese nt the emission spectrum of the likely host galaxy at $z = 0.935$ ruling out a high-redshift explanation for the absence of the optical flux detection. Modelling the GRB multi-wavelength afterglow using the radiative transfer hydrodynamics code BOXFIT provides constraints on physical parameters of the GRB jet and its environment, for instance a relatively wide jet opening angle and an electron energy distribution slope $p$ below 2. Most importantly, the model predicts an optical flux about two orders of magnitude above the observed limits. We calculated that the required host extinction to explain the observed limits in the $r$, $i$ and $z$ bands was $A^{rm host}_{V} > 3.2$ mag, equivalent to $E(B-V)^{rm host} > 1.0$ mag. From the X-ray absorption we derive that the GRB host extinction is $A^{rm host}_{rm V} = 11.6^{+7.5}_{-5.3}$ mag, equivalent to $E(B-V)^{rm host} = 3.7^{+2.4}_{-1.7}$ mag, which is consistent with the extinction required from our BOXFIT derived fluxes. We conclude that the origin of the optical darkness is a high level of extinction in the line of sight to the GRB, most likely within the GRB host galaxy.
We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves a nd spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and its comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency $ u_m$ is below optical and the value of cooling break frequency $ u_c$ is below $X-$rays, $sim 10^{4}$s after the burst. Also, the derived value of the Lorentz factor at the time of naked eye brightness is $sim 300$ with the corresponding blast wave size of $sim 10^{18}$ cm. The numerical fit to the multi-wavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst.
152 - K.L. Page 2009
GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by ROTSE and a host of other telescopes and was detected in the radio by the VLA. The redshift of z= 3.355 +/- 0.005 was determined by Keck/HIRES and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-10^3 keV, systematically softens over time, with E_peak moving from ~600 keV at the start to ~40 keV around 100 s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasithermal model shifting from ~60 keV to ~3 keV over the same time interval. The first optical detection was made at 38 s, but the smooth, featureless profile of the full optical coverage implies that this originated from the afterglow component, not the pulsed/flaring prompt emission. Broadband optical and X-ray coverage of the afterglow at the start of the final X-ray decay (~8 ks) reveals a spectral break between the optical and X-ray bands in the range 10^15 - 2x10^16 Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by ~3x10^5 s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3x10^53 erg and 1.6x10^52 erg for the afterglow; there is no evidence for a jet break in the afterglow up to six days following the burst.
The Swift era has posed a challenge to the standard blast-wave model of Gamma Ray Burst (GRB) afterglows. The key observational features expected within the model are rarely observed, such as the achromatic steepening (`jet-break) of the light curves . The observed afterglow light curves showcase additional complex features requiring modifications within the standard model. Here we present optical/NIR observations, millimeter upper limits and comprehensive broadband modelling of the afterglow of the bright GRB 0505025A, detected by Swift. This afterglow cannot be explained by the simplistic form of the standard blast-wave model. We attempt modelling the multi-wavelength light curves using (i) a forward-reverse shock model, (ii) a two-component outflow model and (iii) blast-wave model with a wind termination shock. The forward-reverse shock model cannot explain the evolution of the afterglow. The two component model is able to explain the average behaviour of the afterglow very well but cannot reproduce the fluctuations in the early X-ray light curve. The wind termination shock model reproduces the early light curves well but deviates from the global behaviour of the late-time afterglow.
Primary very high energy $gamma$-rays from $gamma$-ray bursts (GRBs) are partially absorbed on extragalactic background light (EBL) photons with subsequent formation of intergalactic electromagnetic cascades. Characteristics of the observable cascade $gamma$-ray signal are sensitive to the strength and structure of the extragalactic magnetic field (EGMF). GRB 190114C was recently detected with the MAGIC imaging atmospheric Cherenkov telescopes, for the first time allowing to estimate the observable cascade intensity. We inquire whether any constraints on the EGMF strength and structure could be obtained from publicly-available $gamma$-ray data on GRB 190114C. We present detailed calculations of the observable cascade signal for various EGMF configurations. We show that the sensitivity of the Fermi-LAT space $gamma$-ray telescope is not sufficient to obtain such constraints on the EGMF parameters. However, next-generation space $gamma$-ray observatories such as MAST would be able to detect pair echoes from GRBs similar to GRB 190114C for the EGMF strength below 10^{-17}--10^{-18} G.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا