ترغب بنشر مسار تعليمي؟ اضغط هنا

Can we constrain the extragalactic magnetic field from very high energy observations of GRB 190114C?

83   0   0.0 ( 0 )
 نشر من قبل Timur Dzhatdoev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Primary very high energy $gamma$-rays from $gamma$-ray bursts (GRBs) are partially absorbed on extragalactic background light (EBL) photons with subsequent formation of intergalactic electromagnetic cascades. Characteristics of the observable cascade $gamma$-ray signal are sensitive to the strength and structure of the extragalactic magnetic field (EGMF). GRB 190114C was recently detected with the MAGIC imaging atmospheric Cherenkov telescopes, for the first time allowing to estimate the observable cascade intensity. We inquire whether any constraints on the EGMF strength and structure could be obtained from publicly-available $gamma$-ray data on GRB 190114C. We present detailed calculations of the observable cascade signal for various EGMF configurations. We show that the sensitivity of the Fermi-LAT space $gamma$-ray telescope is not sufficient to obtain such constraints on the EGMF parameters. However, next-generation space $gamma$-ray observatories such as MAST would be able to detect pair echoes from GRBs similar to GRB 190114C for the EGMF strength below 10^{-17}--10^{-18} G.

قيم البحث

اقرأ أيضاً

We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The early-time observations reveal multiple emission components that evolve independently, with a delayed po wer-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to constrain the transition from internal shock to external shock dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment and find that high-energy photons observed by Fermi LAT are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.
406 - E. Aliu , T. Aune , A. Barnacka 2014
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, i t is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.
GRB 190114C is the first gamma-ray burst detected at Very High Energies (VHE, i.e. >300 GeV) by the MAGIC Cherenkov telescope. The analysis of the emission detected by the Fermi satellite at lower energies, in the 10 keV -- 100 GeV energy range, up t o ~ 50 seconds (i.e. before the MAGIC detection) can hold valuable information. We analyze the spectral evolution of the emission of GRB 190114C as detected by the Fermi Gamma-Ray Burst Monitor (GBM) in the 10 keV -- 40 MeV energy range up to ~60 sec. The first 4 s of the burst feature a typical prompt emission spectrum, which can be fit by a smoothly broken power-law function with typical parameters. Starting on ~4 s post-trigger, we find an additional nonthermal component, which can be fit by a power law. This component rises and decays quickly. The 10 keV -- 40 MeV flux of the power-law component peaks at ~ 6 s; it reaches a value of 1.7e-5 erg cm-2 s-1. The time of the peak coincides with the emission peak detected by the Large Area Telescope (LAT) on board Fermi. The power-law spectral slope that we find in the GBM data is remarkably similar to that of the LAT spectrum, and the GBM+LAT spectral energy distribution seems to be consistent with a single component. This suggests that the LAT emission and the power-law component that we find in the GBM data belong to the same emission component, which we interpret as due to the afterglow of the burst. The onset time allows us to estimate the initial jet bulk Lorentz factor Gamma_0 is about 500, depending on the assumed circum-burst density.
On 2015 March 23, VERITAS responded to a $Swift$-BAT detection of a gamma-ray burst, with observations beginning 270 seconds after the onset of BAT emission, and only 135 seconds after the main BAT emission peak. No statistically significant signal i s detected above 140 GeV. The VERITAS upper limit on the fluence in a 40 minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant since the very-high-energy (VHE) observation started only $sim$2 minutes after the prompt emission peaked, and $Fermi$-LAT observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB~150323A ($z=0.593$) limits the attenuation by the extragalactic background light to $sim 50$ % at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below $sim100$ GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be $Agtrsim 3times 10^{11}$ g cm$^{-1}$, consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the ISM, which therefore cannot be ruled out as the environment of GRB 150323A.
93 - H. Kurokawa , T. Kuroda , S. Aoki 2021
Flowing water and brine have been proposed to cause seasonally reappearing dark streaks called recurring slope lineae (RSL) on steep warm slopes on Mars, along with other formation mechanisms that do not involve water. This study aims to examine whet her the evaporation of water vapor from the RSL, whether from fresh water or brine, is detectable by observing water vapor and/or clouds. In this study, we summarize the possible rate and duration of water-vapor emission from RSL in different scenarios, simulate how the emitted water vapor behaves in a global climate model, and discuss the detectability of water vapor in nadir observations during existing and future explorations. We found that, in typical cases, rapid horizontal dissipation within the planetary boundary layer (PBL) following the release of water vapor prohibits cloud formation and the excess water vapor from being distinguished from the background with existing observations. Thus, we conclude that the lack of correlation between the RSL activities and the overlying water-vapor column density does not necessarily rule out the wet origin of RSL. Nevertheless, we also found that water vapor tends to accumulate in basins and valleys in some cases due to the combined effects of topography and low PBL; we suggest the locations of such configuration as targets for future atmospheric studies of Mars dedicated to quantifying water-vapor release (associated with RSL) to elucidate the formation mechanism(s) of the RSL on the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا