ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of anti-chiral edge states on Andreev reflection in graphene-superconductor junction

181   0   0.0 ( 0 )
 نشر من قبل Juntao Song
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the tight binding model and the non-equilibrium Green function method, we study Andreev reflection in graphene-superconductor junction, where graphene has two nonequal Dirac Cones split in energy and therefore time reversal symmetry is broken. Due to the anti-chiral edge states of the current graphene model, an incident electron travelling along the edges makes distinct contribution to Andreev reflections. In a two-terminal device, because Andreev retro-reflection is not allowed for just the anti-chiral edges, in this case the mutual scattering between edge and bulk states is necessary, which leads that the coefficient of Andreev retro-reflection is always symmetrical about the incident energy. In a four-terminal junction, however, the edges are parallel to the interface of superconductor and graphene, so at the interface an incident electron travelling along the edges can be retro-reflected as a hole into bulk modes, or specularly reflected as a hole into anti-chiral edge states again. It is noted that, the coefficient of specular Andreev reflection keeps symmetric as to the incident energy of electron which is consistent with the reported results before, however the coefficient of Andreev retro-reflection shows an unexpected asymmetrical behavior due to the presence of anti-chiral edge states. Our results present some new ideas to study the anti-chiral edge modes and Andreev reflection for a graphene model with the broken time reversal symmetry.



قيم البحث

اقرأ أيضاً

As charge carriers traverse a single superconductor ferromagnet interface they experience an additional spin-dependent phase angle which results in spin mixing and the formation of a bound state called the Andreev Bound State. This state is an essent ial component in the generation of long range spin triplet proximity induced superconductivity and yet the factors controlling the degree of spin mixing and the formation of the bound state remain elusive. Here we demonstrate that point contact Andreev reflection can be used to detect the bound state and extract the resulting spin mixing angle. By examining spectra taken from La1.15Sr1.85Mn2O7 single crystal - Pb junctions, together with a compilation of literature data on highly spin polarised systems, we show that the existence of the Andreev Bound State both resolves a number of long standing controversies in the Andreev literature as well as defining a route to quantify the strength of spin mixing at superconductor-ferromagnet interfaces. Intriguingly we find that for these high transparency junctions, the spin mixing angle appears to take a relatively narrow range of values across all the samples studied. The ferromagnets we have chosen to study share a common property in terms of their spin arrangement, and our observations may point to the importance of this property in determining the spin mixing angle under these circumstances.
178 - Z. D. Kvon 1999
Low temperature transport measurements on superconducting film - normal metal wire - superconducting film (SNS) junctions fabricated on the basis of 6 nm thick superconducting polycrystalline PtSi films are reported. The structures with the normal me tal wires of two different lengths L=1.5 $mu$m and L=6$mu$m and the same widths W=0.3$mu$m are studied. Zero bias resistance dip related to pair current proximity effect is observed for all junctions whereas the subharmonic energy gap structure originating from phase coherent multiple Andreev reflections have occurs only in the SNS junctions with short wires.
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnet ization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.
We realized point contact spectroscopy experiment on ferromagnet/superconductor bilayers. Differential conductance curves show several features that we explained within Bogoliubov-de Gennes formalism considering the presence of two interfaces in the normal-metal-tip/ferromagnet/superconductor device. We demonstrate that such configuration is suitable as local probe of the spin polarization and thickness of ferromagnetic layer, directly on bilayer areas. This is due to the high sensitivity of the Andreev surface states to the physical properties of the ferromagnetic interlayer.
Andreev reflection (AR) in ferromagnet/superconductor junctions is an indispensable spectroscopic tool for measuring spin polarization. We study theoretically how the presence of a thin semiconducting interface in such junctions, inducing Rashba and Dresselhaus spin-orbit coupling, modifies AR processes. The interface gives rise to an effective momentum- and spin-dependent scattering potential, making the probability of AR strongly asymmetric with respect to the sign of the incident electrons transverse momenta. This skew AR creates spatial charge carrier imbalances and transverse Hall currents flow in the ferromagnet. We show that the effect is giant, as compared to the normal regime. We provide a quantitative analysis and a qualitative picture of this phenomenon, and finally show that skew AR also leads to a widely tunable transverse supercurrent response in the superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا