ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Shape Templates with Structured Implicit Functions

96   0   0.0 ( 0 )
 نشر من قبل Kyle Genova
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Template 3D shapes are useful for many tasks in graphics and vision, including fitting observation data, analyzing shape collections, and transferring shape attributes. Because of the variety of geometry and topology of real-world shapes, previous methods generally use a library of hand-made templates. In this paper, we investigate learning a general shape template from data. To allow for widely varying geometry and topology, we choose an implicit surface representation based on composition of local shape elements. While long known to computer graphics, this representation has not yet been explored in the context of machine learning for vision. We show that structured implicit functions are suitable for learning and allow a network to smoothly and simultaneously fit multiple classes of shapes. The learned shape template supports applications such as shape exploration, correspondence, abstraction, interpolation, and semantic segmentation from an RGB image.

قيم البحث

اقرأ أيضاً

The goal of this project is to learn a 3D shape representation that enables accurate surface reconstruction, compact storage, efficient computation, consistency for similar shapes, generalization across diverse shape categories, and inference from de pth camera observations. Towards this end, we introduce Local Deep Implicit Functions (LDIF), a 3D shape representation that decomposes space into a structured set of learned implicit functions. We provide networks that infer the space decomposition and local deep implicit functions from a 3D mesh or posed depth image. During experiments, we find that it provides 10.3 points higher surface reconstruction accuracy (F-Score) than the state-of-the-art (OccNet), while requiring fewer than 1 percent of the network parameters. Experiments on posed depth image completion and generalization to unseen classes show 15.8 and 17.8 point improvements over the state-of-the-art, while producing a structured 3D representation for each input with consistency across diverse shape collections.
Deep implicit functions (DIFs), as a kind of 3D shape representation, are becoming more and more popular in the 3D vision community due to their compactness and strong representation power. However, unlike polygon mesh-based templates, it remains a c hallenge to reason dense correspondences or other semantic relationships across shapes represented by DIFs, which limits its applications in texture transfer, shape analysis and so on. To overcome this limitation and also make DIFs more interpretable, we propose Deep Implicit Templates, a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations. Our key idea is to formulate DIFs as conditional deformations of a template implicit function. To this end, we propose Spatial Warping LSTM, which decomposes the conditional spatial transformation into multiple affine transformations and guarantees generalization capability. Moreover, the training loss is carefully designed in order to achieve high reconstruction accuracy while learning a plausible template with accurate correspondences in an unsupervised manner. Experiments show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
Implicit neural representation is a recent approach to learn shape collections as zero level-sets of neural networks, where each shape is represented by a latent code. So far, the focus has been shape reconstruction, while shape generalization was mo stly left to generic encoder-decoder or auto-decoder regularization. In this paper we advocate deformation-aware regularization for implicit neural representations, aiming at producing plausible deformations as latent code changes. The challenge is that implicit representations do not capture correspondences between different shapes, which makes it difficult to represent and regularize their deformations. Thus, we propose to pair the implicit representation of the shapes with an explicit, piecewise linear deformation field, learned as an auxiliary function. We demonstrate that, by regularizing these deformation fields, we can encourage the implicit neural representation to induce natural deformations in the learned shape space, such as as-rigid-as-possible deformations.
Implicit surface representations, such as signed-distance functions, combined with deep learning have led to impressive models which can represent detailed shapes of objects with arbitrary topology. Since a continuous function is learned, the reconst ructions can also be extracted at any arbitrary resolution. However, large datasets such as ShapeNet are required to train such models. In this paper, we present a new mid-level patch-based surface representation. At the level of patches, objects across different categories share similarities, which leads to more generalizable models. We then introduce a novel method to learn this patch-based representation in a canonical space, such that it is as object-agnostic as possible. We show that our representation trained on one category of objects from ShapeNet can also well represent detailed shapes from any other category. In addition, it can be trained using much fewer shapes, compared to existing approaches. We show several applications of our new representation, including shape interpolation and partial point cloud completion. Due to explicit control over positions, orientations and scales of patches, our representation is also more controllable compared to object-level representations, which enables us to deform encoded shapes non-rigidly.
In this paper, we present a novel implicit glyph shape representation, which models glyphs as shape primitives enclosed by quadratic curves, and naturally enables generating glyph images at arbitrary high resolutions. Experiments on font reconstructi on and interpolation tasks verified that this structured implicit representation is suitable for describing both structure and style features of glyphs. Furthermore, based on the proposed representation, we design a simple yet effective disentangled network for the challenging one-shot font style transfer problem, and achieve the best results comparing to state-of-the-art alternatives in both quantitative and qualitative comparisons. Benefit from this representation, our generated glyphs have the potential to be converted to vector fonts through post-processing, reducing the gap between rasterized images and vector graphics. We hope this work can provide a powerful tool for 2D shape analysis and synthesis, and inspire further exploitation in implicit representations for 2D shape modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا