ترغب بنشر مسار تعليمي؟ اضغط هنا

PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations

230   0   0.0 ( 0 )
 نشر من قبل Edgar Tretschk
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Implicit surface representations, such as signed-distance functions, combined with deep learning have led to impressive models which can represent detailed shapes of objects with arbitrary topology. Since a continuous function is learned, the reconstructions can also be extracted at any arbitrary resolution. However, large datasets such as ShapeNet are required to train such models. In this paper, we present a new mid-level patch-based surface representation. At the level of patches, objects across different categories share similarities, which leads to more generalizable models. We then introduce a novel method to learn this patch-based representation in a canonical space, such that it is as object-agnostic as possible. We show that our representation trained on one category of objects from ShapeNet can also well represent detailed shapes from any other category. In addition, it can be trained using much fewer shapes, compared to existing approaches. We show several applications of our new representation, including shape interpolation and partial point cloud completion. Due to explicit control over positions, orientations and scales of patches, our representation is also more controllable compared to object-level representations, which enables us to deform encoded shapes non-rigidly.

قيم البحث

اقرأ أيضاً

The goal of this project is to learn a 3D shape representation that enables accurate surface reconstruction, compact storage, efficient computation, consistency for similar shapes, generalization across diverse shape categories, and inference from de pth camera observations. Towards this end, we introduce Local Deep Implicit Functions (LDIF), a 3D shape representation that decomposes space into a structured set of learned implicit functions. We provide networks that infer the space decomposition and local deep implicit functions from a 3D mesh or posed depth image. During experiments, we find that it provides 10.3 points higher surface reconstruction accuracy (F-Score) than the state-of-the-art (OccNet), while requiring fewer than 1 percent of the network parameters. Experiments on posed depth image completion and generalization to unseen classes show 15.8 and 17.8 point improvements over the state-of-the-art, while producing a structured 3D representation for each input with consistency across diverse shape collections.
We present an Adaptive Octree-based Convolutional Neural Network (Adaptive O-CNN) for efficient 3D shape encoding and decoding. Different from volumetric-based or octree-based CNN methods that represent a 3D shape with voxels in the same resolution, our method represents a 3D shape adaptively with octants at different levels and models the 3D shape within each octant with a planar patch. Based on this adaptive patch-based representation, we propose an Adaptive O-CNN encoder and decoder for encoding and decoding 3D shapes. The Adaptive O-CNN encoder takes the planar patch normal and displacement as input and performs 3D convolutions only at the octants at each level, while the Adaptive O-CNN decoder infers the shape occupancy and subdivision status of octants at each level and estimates the best plane normal and displacement for each leaf octant. As a general framework for 3D shape analysis and generation, the Adaptive O-CNN not only reduces the memory and computational cost, but also offers better shape generation capability than the existing 3D-CNN approaches. We validate Adaptive O-CNN in terms of efficiency and effectiveness on different shape analysis and generation tasks, including shape classification, 3D autoencoding, shape prediction from a single image, and shape completion for noisy and incomplete point clouds.
Implicit neural representation is a recent approach to learn shape collections as zero level-sets of neural networks, where each shape is represented by a latent code. So far, the focus has been shape reconstruction, while shape generalization was mo stly left to generic encoder-decoder or auto-decoder regularization. In this paper we advocate deformation-aware regularization for implicit neural representations, aiming at producing plausible deformations as latent code changes. The challenge is that implicit representations do not capture correspondences between different shapes, which makes it difficult to represent and regularize their deformations. Thus, we propose to pair the implicit representation of the shapes with an explicit, piecewise linear deformation field, learned as an auxiliary function. We demonstrate that, by regularizing these deformation fields, we can encourage the implicit neural representation to induce natural deformations in the learned shape space, such as as-rigid-as-possible deformations.
We propose a novel neural architecture for representing 3D surfaces, which harnesses two complementary shape representations: (i) an explicit representation via an atlas, i.e., embeddings of 2D domains into 3D; (ii) an implicit-function representatio n, i.e., a scalar function over the 3D volume, with its levels denoting surfaces. We make these two representations synergistic by introducing novel consistency losses that ensure that the surface created from the atlas aligns with the level-set of the implicit function. Our hybrid architecture outputs results which are superior to the output of the two equivalent single-representation networks, yielding smoother explicit surfaces with more accurate normals, and a more accurate implicit occupancy function. Additionally, our surface reconstruction step can directly leverage the explicit atlas-based representation. This process is computationally efficient, and can be directly used by differentiable rasterizers, enabling training our hybrid representation with image-based losses.
Deep implicit functions (DIFs), as a kind of 3D shape representation, are becoming more and more popular in the 3D vision community due to their compactness and strong representation power. However, unlike polygon mesh-based templates, it remains a c hallenge to reason dense correspondences or other semantic relationships across shapes represented by DIFs, which limits its applications in texture transfer, shape analysis and so on. To overcome this limitation and also make DIFs more interpretable, we propose Deep Implicit Templates, a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations. Our key idea is to formulate DIFs as conditional deformations of a template implicit function. To this end, we propose Spatial Warping LSTM, which decomposes the conditional spatial transformation into multiple affine transformations and guarantees generalization capability. Moreover, the training loss is carefully designed in order to achieve high reconstruction accuracy while learning a plausible template with accurate correspondences in an unsupervised manner. Experiments show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا