ﻻ يوجد ملخص باللغة العربية
We present a comparative study of particle-hole and particle-particle channels of random-phase approximation (RPA) for molecular dissociations of different bonding types. We introduced a textit{direct} particle-particle RPA scheme, in analogy to the textit{direct} particle-hole RPA formalism, whereby the exchange-type contributions are excluded. This allows us to compare the behavior of the particle-hole and particle-particle RPA channels on the same footing. Our study unravels the critical role of exchange contributions in determining behaviors of the two RPA channels for describing stretched molecules. We also made an attempt to merge particle-hole RPA and particle-particle RPA into a unified scheme, with the double-counting terms removed. However, benchmark calculations indicate that a straightforward combination of the two RPA channels does not lead to a successful computational scheme for describing molecular dissociations.
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation (
We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibr
We developed the quasi-particle random phase approximation (QRPA) for the neutrino scattering off even-even nuclei via neutral current (NC) and charged cur- rent (CC). The QRPA has been successfully applied for the beta and betabeta decay of relevant
Although many random-phase approximation (RPA) calculations of the Gamow-Teller (GT) response exist, this is not the case for calculations going beyond the mean-field approximation. We apply a consistent model that includes the coupling of the GT res
We present a method using Feynman-like diagrams to calculate the statistical properties of random many-body potentials. This method provides a promising alternative to existing techniques typically applied to this class of problems, such as the metho