ترغب بنشر مسار تعليمي؟ اضغط هنا

Rational real algebraic models of compact differential surfaces with circle actions

108   0   0.0 ( 0 )
 نشر من قبل Adrien Dubouloz
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an algebro-geometric classification of smooth real affine algebraic surfaces endowed with an effective action of the real algebraic circle group $mathbb{S}^1$ up to equivariant isomorphisms. As an application, we show that every compact differentiable surface endowed with an action of the circle $S^1$ admits a unique smooth rational real quasi-projective model up to $mathbb{S}^1$-equivariant birational diffeomorphism.



قيم البحث

اقرأ أيضاً

We extend the Altmann-Hausen presentation of normal affine algebraic C-varieties endowed with effective torus actions to the real setting. In particular, we focus on actions of quasi-split real tori, in which case we obtain a simpler presentation.
We show that the results we had obtained on diagonals of nine and ten parameters families of rational functions using creative telescoping, yielding modular forms expressed as pullbacked $ _2F_1$ hypergeometric functions, can be obtained, much more e fficiently, calculating the $ j$-invariant of an elliptic curve canonically associated with the denominator of the rational functions. In the case where creative telescoping yields pullbacked $ _2F_1$ hypergeometric functions, we generalize this result to other families of rational functions in three, and even more than three, variables. We also generalise this result to rational functions in more than three variables when the denominator can be associated to an algebraic variety corresponding to products of elliptic curves, foliation in elliptic curves. We also extend these results to rational functions in three variables when the denominator is associated with a {em genus-two curve such that its Jacobian is a split Jacobian} corresponding to the product of two elliptic curves. We sketch the situation where the denominator of the rational function is associated with algebraic varieties that are not of the general type, having an infinite set of birational automorphisms. We finally provide some examples of rational functions in more than three variables, where the telescopers have pullbacked $ _2F_1$ hypergeometric solutions, the denominator corresponding to an algebraic variety being not simply foliated in elliptic curves, but having a selected elliptic curve in the variety explaining the pullbacked $ _2F_1$ hypergeometric solution.
In this paper, we investigate automorphisms of compact Kahler manifolds with different levels of topological triviality. In particular, we provide several examples of smooth complex projective surfaces X whose groups of $C^infty$-isotopically trivial automorphisms, resp. cohomologically trivial automorphisms, have a number of connected components which can be arbitrarily large.
116 - Adrien Dubouloz 2018
We construct smooth rational real algebraic varieties of every dimension $ge$ 4 which admit infinitely many pairwise non-isomorphic real forms.
In this article we review the question of constructing geometric quotients of actions of linear algebraic groups on irreducible varieties over algebraically closed fields of characteristic zero, in the spirit of Mumfords geometric invariant theory (G IT). The article surveys some recent work on geometric invariant theory and quotients of varieties by linear algebraic group actions, as well as background material on linear algebraic groups, Mumfords GIT and some of the challenges that the non-reductive setting presents. The earlier work of two of the authors in the setting of unipotent group actions is extended to deal with actions of any linear algebraic group. Given the data of a linearisation for an action of a linear algebraic group H on an irreducible variety $X$, an open subset of stable points $X^s$ is defined which admits a geometric quotient variety $X^s/H$. We construct projective completions of the quotient $X^s/H$ by considering a suitable extension of the group action to an action of a reductive group on a reductive envelope and using Mumfords GIT. In good cases one can also compute the stable locus $X^s$ in terms of stability (in the sense of Mumford for reductive groups) for the reductive envelope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا