We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a
lgebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $rle d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d^{vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,cdots,d_s)$. Furthermore, we generalize the Grauert-M$ddot{text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1le ile n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to
some number that depends only on $X$, then $E$ is either a direct sum of line bundles or $delta_i$-unstable for some $delta_i$. So we partially answer a problem posted by Mu~{n}oz-Occhetta-Sol{a} Conde. In particular, if $X$ is a generalized Grassmannian $mathcal{G}$ and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ splits as a direct sum of line bundles. We improve the main theorem of Mu~{n}oz-Occhetta-Sol{a} Conde when $X$ is a generalized Grassmannian by considering the Chow rings. Moreover, by calculating the relative tangent bundles between two rational homogeneous spaces, we give explicit bounds for the generalized Grauert-M{u}lich-Barth theorem on rational homogeneous spaces.
We prove that the kernel bundle of the evaluation morphism of global sections, namely the syzygy bundle, of a sufficiently ample line bundle on a smooth projective variety is slope stable with respect to any polarization. This settles a conjecture of Ein-Lazarsfeld-Mustopa.
Let $A$ be an abelian surface. We construct two complete families of stable vector bundles on the generalized Kummer variety $K_n(A)$. The first is the family of tautological bundles associated to stable bundles on $A$, and the second is the family o
f the wrong-way fibers of a universal family of stable bundles on the dual abelian variety $widehat{A}$ parametrized by $K_n(A)$. Each family exhibits a smooth connected component in the moduli space of stable bundles on $K_n(A)$.
We extend the Altmann-Hausen presentation of normal affine algebraic C-varieties endowed with effective torus actions to the real setting. In particular, we focus on actions of quasi-split real tori, in which case we obtain a simpler presentation.