ﻻ يوجد ملخص باللغة العربية
The recently proposed audio-visual scene-aware dialog task paves the way to a more data-driven way of learning virtual assistants, smart speakers and car navigation systems. However, very little is known to date about how to effectively extract meaningful information from a plethora of sensors that pound the computational engine of those devices. Therefore, in this paper, we provide and carefully analyze a simple baseline for audio-visual scene-aware dialog which is trained end-to-end. Our method differentiates in a data-driven manner useful signals from distracting ones using an attention mechanism. We evaluate the proposed approach on the recently introduced and challenging audio-visual scene-aware dataset, and demonstrate the key features that permit to outperform the current state-of-the-art by more than 20% on CIDEr.
We introduce the task of scene-aware dialog. Our goal is to generate a complete and natural response to a question about a scene, given video and audio of the scene and the history of previous turns in the dialog. To answer successfully, agents must
Scene-aware dialog systems will be able to have conversations with users about the objects and events around them. Progress on such systems can be made by integrating state-of-the-art technologies from multiple research areas including end-to-end dia
We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the a
Visual Dialog is a multimodal task of answering a sequence of questions grounded in an image, using the conversation history as context. It entails challenges in vision, language, reasoning, and grounding. However, studying these subtasks in isolatio
Can we develop visually grounded dialog agents that can efficiently adapt to new tasks without forgetting how to talk to people? Such agents could leverage a larger variety of existing data to generalize to new tasks, minimizing expensive data collec