ترغب بنشر مسار تعليمي؟ اضغط هنا

Political Discussions in Homogeneous and Cross-Cutting Communication Spaces

95   0   0.0 ( 0 )
 نشر من قبل Jisun An
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Online platforms, such as Facebook, Twitter, and Reddit, provide users with a rich set of features for sharing and consuming political information, expressing political opinions, and exchanging potentially contrary political views. In such activities, two types of communication spaces naturally emerge: those dominated by exchanges between politically homogeneous users and those that allow and encourage cross-cutting exchanges in politically heterogeneous groups. While research on political talk in online environments abounds, we know surprisingly little about the potentially varying nature of discussions in politically homogeneous spaces as compared to cross-cutting communication spaces. To fill this gap, we use Reddit to explore the nature of political discussions in homogeneous and cross-cutting communication spaces. In particular, we develop an analytical template to study interaction and linguistic patterns within and between politically homogeneous and heterogeneous communication spaces. Our analyses reveal different behavioral patterns in homogeneous and cross-cutting communications spaces. We discuss theoretical and practical implications in the context of research on political talk online.



قيم البحث

اقرأ أيضاً

88 - Steven Weber 2020
This paper explores the hypothesis that the diversity of human languages, right now a barrier to interoperability in communication and trade, will become significantly less of a barrier as machine translation technologies are deployed over the next s everal years.But this new boundary-breaking technology does not reduce all boundaries equally, and it creates new challenges for the distribution of ideas and thus for innovation and economic growth.
The novel coronavirus pandemic continues to ravage communities across the US. Opinion surveys identified importance of political ideology in shaping perceptions of the pandemic and compliance with preventive measures. Here, we use social media data t o study complexity of polarization. We analyze a large dataset of tweets related to the pandemic collected between January and May of 2020, and develop methods to classify the ideological alignment of users along the moderacy (hardline vs moderate), political (liberal vs conservative) and science (anti-science vs pro-science) dimensions. While polarization along the science and political dimensions are correlated, politically moderate users are more likely to be aligned with the pro-science views, and politically hardline users with anti-science views. Contrary to expectations, we do not find that polarization grows over time; instead, we see increasing activity by moderate pro-science users. We also show that anti-science conservatives tend to tweet from the Southern US, while anti-science moderates from the Western states. Our findings shed light on the multi-dimensional nature of polarization, and the feasibility of tracking polarized opinions about the pandemic across time and space through social media data.
301 - Scott A. Hale 2015
This article analyzes users who edit Wikipedia articles about Okinawa, Japan, in English and Japanese. It finds these users are among the most active and dedicated users in their primary languages, where they make many large, high-quality edits. Howe ver, when these users edit in their non-primary languages, they tend to make edits of a different type that are overall smaller in size and more often restricted to the narrow set of articles that exist in both languages. Design changes to motivate wider contributions from users in their non-primary languages and to encourage multilingual users to transfer more information across language divides are presented.
As civil discourse increasingly takes place online, misinformation and the polarization of news shared in online communities have become ever more relevant concerns with real world harms across our society. Studying online news sharing at scale is ch allenging due to the massive volume of content which is shared by millions of users across thousands of communities. Therefore, existing research has largely focused on specific communities or specific interventions, such as bans. However, understanding the prevalence and spread of misinformation and polarization more broadly, across thousands of online communities, is critical for the development of governance strategies, interventions, and community design. Here, we conduct the largest study of news sharing on reddit to date, analyzing more than 550 million links spanning 4 years. We use non-partisan news source ratings from Media Bias/Fact Check to annotate links to news sources with their political bias and factualness. We find that, compared to left-leaning communities, right-leaning communities have 105% more variance in the political bias of their news sources, and more links to relatively-more biased sources, on average. We observe that reddit users voting and re-sharing behaviors generally decrease the visibility of extremely biased and low factual content, which receives 20% fewer upvotes and 30% fewer exposures from crossposts than more neutral or more factual content. This suggests that reddit is more resilient to low factual content than Twitter. We show that extremely biased and low factual content is very concentrated, with 99% of such content being shared in only 0.5% of communities, giving credence to the recent strategy of community-wide bans and quarantines.
Social media provides many opportunities to monitor and evaluate political phenomena such as referendums and elections. In this study, we propose a set of approaches to analyze long-running political events on social media with a real-world experimen t: the debate about Brexit, i.e., the process through which the United Kingdom activated the option of leaving the European Union. We address the following research questions: Could Twitter-based stance classification be used to demonstrate public stance with respect to political events? What is the most efficient and comprehensive approach to measuring the impact of politicians on social media? Which of the polarized sides of the debate is more responsive to politician messages and the main issues of the Brexit process? What is the share of bot accounts in the Brexit discussion and which side are they for? By combining the user stance classification, topic discovery, sentiment analysis, and bot detection, we show that it is possible to obtain useful insights about political phenomena from social media data. We are able to detect relevant topics in the discussions, such as the demand for a new referendum, and to understand the position of social media users with respect to the different topics in the debate. Our comparative and temporal analysis of political accounts can detect the critical periods of the Brexit process and the impact they have on the debate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا