ﻻ يوجد ملخص باللغة العربية
We demonstrate coherent hard electromagnetic radiation generation from reflection by the electron density singularity formed at the relativistic bow wave in laser plasma via particle-in-cell simulations. Wake and bow waves driven by an intense laser pulse form an electron density singularity at the laser pulse front where they join. A counter-propagating laser pulse is reflected at the electron density modulations moving with relativistic velocity. The reflected electromagnetic pulse is compressed and its frequency is upshifted. Its frequency spectrum contains relativistic harmonics of the driver pulse frequency generated at the bow wave front, all upshifted with the same factor as the fundamental mode of the incident light.
A new parameter regime of laser wakefield acceleration driven by sub-petawatt femotsecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation
Plasma high harmonics generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles whic
We report the experimental results of simultaneous measurements on the electron and X-ray spectra from near-critical-density (NCD) double-layer targets irradiated by relativistic femtosecond pulses at the intensity of 5E19 W/cm^2. The dependence of t
This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmit