ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent keV backscattering from plasma-wave boosted relativistic electron mirrors

117   0   0.0 ( 0 )
 نشر من قبل Feiyu Li
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new parameter regime of laser wakefield acceleration driven by sub-petawatt femotsecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation including the mirror formation and Thomson scattering demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driver laser intensities and high density gas targets.



قيم البحث

اقرأ أيضاً

We report evidence for the first generation of XUV spectra from relativistic surface high-harmonic generation (SHHG) on plasma mirrors at a kilohertz repetition rate, emitted simultaneously and correlated to the emission of energetic electrons. We pr esent measurements of SHHG spectra and electron angular distributions as a function of the experimentally controlled plasma density gradient scale length $L_mathrm{g}$ for three increasingly short and intense driving pulses: 24~fs (9 optical cycles) and $a_0=1.1$, 9~fs (3.5 optical cycles) and $a_0=1.8$, and finally 4~fs (1.7 optical cycles) and $a_0approx2.0$. For all driver pulses, we observe relativistic SHHG in the range $L_mathrm{g}in[lambda/25,lambda/10]$, with an optimum gradient scale length of $L_mathrm{g}approxlambda/15$.
We demonstrate coherent hard electromagnetic radiation generation from reflection by the electron density singularity formed at the relativistic bow wave in laser plasma via particle-in-cell simulations. Wake and bow waves driven by an intense laser pulse form an electron density singularity at the laser pulse front where they join. A counter-propagating laser pulse is reflected at the electron density modulations moving with relativistic velocity. The reflected electromagnetic pulse is compressed and its frequency is upshifted. Its frequency spectrum contains relativistic harmonics of the driver pulse frequency generated at the bow wave front, all upshifted with the same factor as the fundamental mode of the incident light.
Flying plasma mirrors induced by intense lasers has been proposed as a promising way to generate few-cycle EUV or X-ray lasers. In addition, if such a relativistic plasma mirror can accelerate, then it would serve as an analog black hole to investiga te the information loss paradox associated with the black hole Hawking evaporation. Among these applications, the reflectivity, which is usually frequency-dependent, would affect the outgoing photon spectrum and therefore impact on the analysis of the physics under investigation. In this paper, these two issues are investigated analytically and numerically with one-dimensional particle-in-cell (PIC) simulations. Based on our simulation results, we propose a new model that provides a better estimate of the reflectivity than those studied previously. Besides, we found that the peak frequency of the reflected spectrum of a gaussian incident wave deviates from the expected value, $4gamma^2omega$, due to the dependence of reflectivity on the frequency of the incident wave.
202 - Munshi G. Mustafa 2008
Ultra-intense lasers are expected to produce, in near future, relativistic electron-positron plasma droplets. Considering the local photon production rate in complete leading order in quantum electrodynamics (QED), we point out that these droplets are interesting sources of gamma ray flashes
Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave coupling between electromagnetic and plas ma waves in two-species plasmas with arbitrary mass ratios, confirmed with a comprehensive set of particle-in-cell simulations, reveals violations of commonly-held assumptions about the behavior of electron-positron plasmas. Specifically, in the electron-positron limit three-wave parametric interaction between light and the plasma acoustic wave can occur, and the acoustic wave phase velocity differs from its usually assumed value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا