ﻻ يوجد ملخص باللغة العربية
The high-energy radiation fields of T Tauri stars (TTS) should affect the surrounding circumstellar disk, having implications for disk transport and heating. Yet, observational evidence of the effect of high-energy fields on disks is scarce. Here we investigate the connection between X-ray emission and the innermost gas disk by leveraging the variability of TTS. We obtained multiple epochs of coordinated data (taken either simultaneously or within a few hours) of accreting TTS with the Hubble Space Telescope, the Neil Gehrels Swift Observatory, and the Chandra X-ray Observatory. We measured the far-ultraviolet (FUV) H2 bump feature at 1600 A, which traces gas <1 AU from the star; the near-ultraviolet (NUV) emission, from which we extract the accretion luminosity; and also the X-ray luminosity. We do not find a correlation between the FUV H2 bump and X-ray luminosity. Therefore, an observable tracer of the effect of X-ray ionization in the innermost disk remains elusive. We report a correlation between the FUV H2 bump and accretion luminosity, linking this feature to the disk surface density. We also see a correlation between the X-ray luminosity and the accretion column density, implying that flaring activity may influence accretion. These results stress the importance of coordinated multiwavelength work to understand TTS.
We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12
We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 My
The soft X-ray emission from high density plasma in CTTS is associated with the accretion process. It is still unclear whether this high density cool plasma is heated in the accretion shock, or if it is coronal plasma fed/modified by the accretion pr
We investigate which properties of protoplanetary disks around T Tauri stars affect the physics and chemistry in the regions where mid- and far-IR water lines originate and their respective line fluxes. We search for diagnostics for future observatio
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray