ﻻ يوجد ملخص باللغة العربية
We investigate which properties of protoplanetary disks around T Tauri stars affect the physics and chemistry in the regions where mid- and far-IR water lines originate and their respective line fluxes. We search for diagnostics for future observations. With the code ProDiMo, we build a series of models exploring a large parameter space, computing rotational and rovibrational transitions of water in nonlocal thermodynamic equilibrium (non-LTE). We select a sample of transitions in the mid- IR regime and the fundamental ortho and para water transitions in the far-IR. We investigate the chemistry and the local physical conditions in the line emitting regions. We calculate Spitzer spectra for each model and compare far-IR and mid-IR lines. In addition, we use mid-IR colors to tie the water line predictions to the dust continuum. Parameters affecting the water line fluxes in disks by more than a factor of three are : the disk gas mass, the dust-to-gas mass ratio, the dust maximum grain size, ISM(InterStellarMedium) UV radiation field, the mixing parameter of Dubrulle settling, the disk flaring parameter, and the dust size distribution. The first four parameters affect the mid-IR lines much more than the far-IR lines. A key driver behind water spectroscopy is the dust opacity, which sets the location of the water line emitting region. We identify three types of parameters. Parameters, such as dust-to-gas ratio, ISM radiation field, and dust size distribution, affect the mid-IR lines more, while the far-IR transitions are more affected by the flaring index. The gas mass greatly affects lines in both regimes. Higher spectral resolution and line sensitivities, like from the James Webb Space Telescope, are needed to detect a statistically relevant sample of individual water lines to distinguish further between these types of parameters.
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers
This paper investigates how the far-IR water ice features can be used to infer properties of disks around T Tauri stars and the water ice thermal history. We explore the power of future observations with SOFIA/HIRMES and SPICAs proposed far-IR instru
Mid-IR water lines from protoplanetary disks around T Tauri stars have a detection rate of 50%. Models have identified multiple physical properties of disks such as dust-to-gas mass ratio, dust size power law distribution, disk gas mass, disk inner r
High-energy radiation from T Tauri stars (TTS) influences the amount and longevity of gas in disks, thereby playing a crucial role in the creation of gas giant planets. Here we probe the high-energy ionizing radiation from TTS using high-resolution m
We present the largest survey of spectrally resolved mid-infrared water emission to date, with spectra for 11 disks obtained with the Michelle and TEXES spectrographs on Gemini North. Water emission is detected in 6 of 8 disks around classical T Taur