ﻻ يوجد ملخص باللغة العربية
The inverse problem of electrical resistivity surveys (ERSs) is difficult because of its nonlinear and ill-posed nature. For this task, traditional linear inversion methods still face challenges such as suboptimal approximation and initial model selection. Inspired by the remarkable nonlinear mapping ability of deep learning approaches, in this article, we propose to build the mapping from apparent resistivity data (input) to resistivity model (output) directly by convolutional neural networks (CNNs). However, the vertically varying characteristic of patterns in the apparent resistivity data may cause ambiguity when using CNNs with the weight sharing and effective receptive field properties. To address the potential issue, we supply an additional tier feature map to CNNs to help those aware of the relationship between input and output. Based on the prevalent U-Net architecture, we design our network (ERSInvNet) that can be trained end-to-end and can reach a very fast inference speed during testing. We further introduce a depth weighting function and a smooth constraint into loss function to improve inversion accuracy for the deep region and suppress false anomalies. Six groups of experiments are considered to demonstrate the feasibility and efficiency of the proposed methods. According to the comprehensive qualitative analysis and quantitative comparison, ERSInvNet with tier feature map, smooth constraints, and depth weighting function together achieve the best performance.
We propose a new method to tackle the mapping challenge from time-series data to spatial image in the field of seismic exploration, i.e., reconstructing the velocity model directly from seismic data by deep neural networks (DNNs). The conventional wa
Magnetic resonance-electrical properties tomography (MR-EPT) is a technique used to estimate the conductivity and permittivity of tissues from MR measurements of the transmit magnetic field. Different reconstruction methods are available, however all
Ramp metering that uses traffic signals to regulate vehicle flows from the on-ramps has been widely implemented to improve vehicle mobility of the freeway. Previous studies generally update signal timings in real-time based on predefined traffic meas
Moving loads such as cars and trains are very useful sources of seismic waves, which can be analyzed to retrieve information on the seismic velocity of subsurface materials using the techniques of ambient noise seismology. This information is valuabl
High-quality labeled datasets play a crucial role in fueling the development of machine learning (ML), and in particular the development of deep learning (DL). However, since the emergence of the ImageNet dataset and the AlexNet model in 2012, the si