ﻻ يوجد ملخص باللغة العربية
We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we point out that a system subject to the latter for the entire cycle tends to lose coherence of the subharmonic oscillations, and thereby the long-time temporal symmetry breaking. We provide an example of a short-ranged two-dimensional system which does not suffer from this and therefore displays persistent subharmonic oscillations stabilised by the dissipation. We also show that this is fundamentally different from the disordered DTC previously found in closed systems, both conceptually and in its phenomenology. The framework we develop here clarifies how fully connected models constitute a special case where subharmonic oscillations are stable in the thermodynamic limit.
A cornerstone assumption that most literature on discrete time crystals has relied on is that homogeneous Floquet systems generally heat to a featureless infinite temperature state, an expectation that motivated researchers in the field to mostly foc
The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase
Time crystals are genuinely non-equilibrium quantum phases of matter that break time-translational symmetry. While in non-equilibrium closed systems time crystals have been experimentally realized, it remains an open question whether or not such a ph
We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the cr
We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical