ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA 200-parsec Resolution Imaging of Smooth Cold Dusty Disks in Typical $z sim 3$ Star-Forming Galaxies

107   0   0.0 ( 0 )
 نشر من قبل Wiphu Rujopakarn
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-fidelity, 30 milliarcsecond (200-pc) resolution ALMA rest-frame 240 $mu$m observations of cold dust emission in three typical main-sequence star-forming galaxies (SFGs) at $z sim 3$ in the Hubble Ultra-Deep Field (HUDF). The cold dust is distributed within the smooth disk-like central regions of star formation $1 - 3$ kpc in diameter, despite their complex and disturbed rest-frame UV and optical morphologies. No dust substructures or clumps are seen down to $simeq 1- 3$ $M_odot$yr$^{-1}$ (1$sigma$) per 200-pc beam. No dust emission is observed at the locations of UV-emitting clumps, which lie $simeq 2-10$ kpc from the bulk of star formation. Clumpy substructures can contribute no more than $1-7$% of the total star formation in these galaxies (3$sigma$ upper limits). The lack of star-forming substructures in our HUDF galaxies is to be contrasted with the multiple substructures characteristic of submillimeter-selected galaxies (SMGs) at the same cosmic epoch, particularly the far-IR-bright SMGs with similarly high-fidelity ALMA observations of Hodge et al. (2019). Individual star-forming substructures in these SMGs contain $sim10-30$% of their total star formation. A substructure in these SMGs is often comparably bright in the far-infrared as (or in some cases brighter than) our typical SFGs, suggesting that these SMGs originate from a class of disruptive event involving multiple objects at the scale of our HUDF galaxies. The scale of the disruptive event found in our main-sequence SFGs, characterized by the lack of star-forming substructures at our resolution and sensitivity, could be less violent, e.g., gas-rich disk instability or minor mergers.



قيم البحث

اقرأ أيضاً

The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Hersch el. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.
Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_ {2}O$(202 $-$ 111) ($ u_{rest}$ = 987.927 GHz) is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGN) over many orders-of-magnitude in FIR luminosity (L$_{rm FIR}$). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially ($sim$0.5 arcsec corresponding to $sim$1 kiloparsec) and spectrally resolved ($sim$100 kms$^{-1}$) observations of p$-$$rm H_{2}O$(202 $-$ 111) in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). In addition to increasing the sample of luminous ($ > $ $10^{12}$L$_{odot}$) galaxies observed with $rm H_{2}O$, this paper examines the L$_{rm H_{2}O}$/L$_{rm FIR}$ relation on resolved scales for the first time at high-redshift. We find that L$_{rm H_{2}O}$ is correlated with L$_{rm FIR}$ on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average L$_{rm H_{2}O}$/L$_{rm FIR}$ =$2.76^{+2.15}_{-1.21}times10^{-5}$. We find that the scatter in the observed L$_{rm H_{2}O}$/L$_{rm FIR}$ relation does not obviously correlate with the effective temperature of the dust spectral energy distribution (SED) or the molecular gas surface density. This is a first step in developing p$-$$rm H_{2}O$(202 $-$ 111) as a resolved star formation rate (SFR) calibrator.
High-redshift dusty star-forming galaxies with very high star formation rates (500 -- 3000 M$_odot$ yr$^{-1}$) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these system s can reveal the driving factor behind the high star formation. Using molecular gas tracers like high-J CO lines, neutral carbon lines and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar medium. In this paper, we present high resolution($sim$0.4) observations of CO(7-6), [CI](2-1) and dust continuum of 3 lensed galaxies from the SPT-SMG sample at z$sim$3 with the Atacama Large Millimeter/submillimeter Array. Our sources have high intrinsic star-formation rates (>850 M$_odot$ yr$^{-1}$) and rather short depletion timescales (<100 Myr). Based on the $rm L_{[rm CI](2-1)}/ rm L_{rm CO(7-6)}$ and $rm L_{[rm CI](2-1)}/rm L_{rm IR}$ ratios, our sample galaxies exhibit higher radiation field intensity compared to other submillimetre galaxies but have similar gas densities. We perform visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H$_2$ conversion factor $alpha_{rm CO}$ but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103-45 and SPT2147-50 are likely rotating disks while SPT2357-51 is a probable major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high-z dusty star-forming galaxies.
There is a large consensus that gas in high-$z$ galaxies is highly turbulent, because of a combination of stellar feedback processes and gravitational instabilities driven by mergers and gas accretion. In this paper, we present the analysis of a samp le of five Dusty Star Forming Galaxies (DSFGs) at $4 lesssim zlesssim 5$. Taking advantage of the magnifying power of strong gravitational lensing, we quantified their kinematic and dynamical properties from ALMA observations of their [CII] emission line. We combined the dynamical measurements obtained for these galaxies with those obtained from previous studies to build the largest sample of $z sim 4.5$ galaxies with high-quality data and sub-kpc spatial resolutions, so far. We found that all galaxies in the sample are dynamically cold, with rotation-to-random motion ratios, $V/sigma$, between 7 to 15. The relation between their velocity dispersions and their star-formation rates indicates that stellar feedback is sufficient to sustain the turbulence within these galaxies and no further mechanisms are needed. In addition, we performed a rotation curve decomposition to infer the relative contribution of the baryonic (gas, stars) and dark matter components to the total gravitational potentials. This analysis allowed us to compare the structural properties of the studied DSFGs with those of their descendants, the local early type galaxies. In particular, we found that five out of six galaxies of the sample show the dynamical signature of a bulge, indicating that the spheroidal component is already in place at $z sim 4.5$.
We present 0.15-arcsec (1 kpc) resolution ALMA observations of the [CII] 157.74 um line and rest-frame 160-um continuum emission in two z~3 dusty, star-forming galaxies - ALESS 49.1 and ALESS 57.1, combined with resolved CO(3-2) observations. In both sources, the [CII] surface brightness distribution is dominated by a compact core $leq$1 kpc in radius, a factor of 2-3 smaller than the extent of the CO(3-2) emission. In ALESS 49.1, we find an additional extended (8-kpc radius), low surface-brightness [CII] component. Based on an analysis of mock ALMA observations, the [CII] and 160-um continuum surface brightness distributions are inconsistent with a single-Gaussian surface brightness distribution with the same size as the CO(3-2) emission. The [CII] rotation curves flatten at $simeq$2 kpc radius, suggesting the kinematics of the central regions are dominated by a baryonic disc. Both galaxies exhibit a strong [CII]/FIR deficit on 1-kpc scales, with FIR-surface-brightness to [CII]/FIR slope steeper than in local star-forming galaxies. A comparison of the [CII]/CO(3-2) observations with PDR models suggests a strong FUV radiation field ($G_0sim10^4$) and high gas density ($nmathrm{(H)}sim10^4-10^5$ cm$^{-3}$) in the central regions of ALESS 49.1 and 57.1. The most direct interpretation of the pronounced [CII]/FIR deficit is a thermal saturation of the C+ fine-structure levels at temperatures $geq$500 K, driven by the strong FUV field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا