ﻻ يوجد ملخص باللغة العربية
Adversarial training has shown impressive success in learning bilingual dictionary without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this work, we revisit adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. Extensive experimentations with European, non-European and low-resource languages show that our method is more robust and achieves better performance than recently proposed adversarial and non-adversarial approaches.
Unsupervised neural machine translation (UNMT) has recently attracted great interest in the machine translation community. The main advantage of the UNMT lies in its easy collection of required large training text sentences while with only a slightly
We propose an effective consistency training framework that enforces a training models predictions given original and perturbed inputs to be similar by adding a discrete noise that would incur the highest divergence between predictions. This virtual
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme
Although neural machine translation (NMT) has advanced the state-of-the-art on various language pairs, the interpretability of NMT remains unsatisfactory. In this work, we propose to address this gap by focusing on understanding the input-output beha
The celebrated Seq2Seq technique and its numerous variants achieve excellent performance on many tasks such as neural machine translation, semantic parsing, and math word problem solving. However, these models either only consider input objects as se