ترغب بنشر مسار تعليمي؟ اضغط هنا

Superhydrophobic frictions

71   0   0.0 ( 0 )
 نشر من قبل Timoth\\'ee Mouterde
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Contrasting with its sluggish behavior on standard solids, water is extremely mobile on superhydrophobic materials, as shown for instance by the continuous acceleration of drops on tilted water-repellent leaves. For much longer substrates, however, drops reach a terminal velocity that results from a balance between weight and friction, allowing us to question the nature of this friction. We report that the relationship between force and terminal velocity is non-linear. This is interpreted by showing that classical sources of friction are minimized, so that the aerodynamical resistance to motion becomes dominant, which eventually explains the matchless mobility of water. Our results are finally extended to viscous liquids, also known to be unusually quick on these materials.

قيم البحث

اقرأ أيضاً

We investigate the transition between the Cassie-Baxter and Wenzel states of a slowly evaporating, micron-scale drop on a superhydrophobic surface. In two dimensions analytical results show that there are two collapse mechanisms. For long posts the d rop collapses when it is able to overcome the free energy barrier presented by the hydrophobic posts. For short posts, as the drop loses volume, its curvature increases allowing it to touch the surface below the posts. We emphasise the importance of the contact line retreating across the surface as the drop becomes smaller: this often preempts the collapse. In a quasi-three dimensional simulation we find similar behaviour, with the additional feature that the drop can de-pin from all but the peripheral posts, so that its base resembles an inverted bowl.
When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surfac e, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surfaces grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplets final wetting state with constant volume, and show that it depends strongly on the surface texture. We then vary the volume of the droplet keeping fixed the geometric surface parameters to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show a very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and theoretical model can be modified to study other types of surface.
We report experiments on the deformation and transport of an elastic fiber in a viscous cellular flow, namely a lattice of counter-rotative vortices. We show that the fiber can buckle when approaching a stagnation point. By tuning either the flow or fiber properties, we measure the onset of this buckling instability. The buckling threshold is determined by the relative intensity of viscous and elastic forces, the elasto-viscous number Sp. Moreover we show that flexible fibers escape faster from a vortex (formed by closed streamlines) compared to rigid fibers. As a consequence, the deformation of the fiber changes its transport properties in the cellular flow.
Cellulose nanocrystals (CNC) are naturally-derived nanostructures of growing importance for the production of composites having attractive mechanical properties, and offer improved sustainability over purely petroleum-based alternatives. Fabrication of CNC composites typically involves extrusion of CNC suspensions and gels in a variety of solvents, in the presence of additives such as polymers and curing agents. However, most studies so far have focused on aqueous CNC gels, yet the behavior of CNC-polymer gels in organic solvents is important to their wider processability. Here, we study the rheological behavior of composite polymer-CNC gels in dimethylformamide, which include additives for both UV and thermal crosslinking. Using rheometry coupled with in-situ infrared spectroscopy, we show that under external shear, CNC-polymer gels display progressive and irreversible failure of the hydrogen bond network that is responsible for their pronounced elastic properties. In the absence of cross-linking additives, the polymer-CNC gels show negligible recovery upon cessation of flow, while the presence of additives allows the gels to recover via van der Waals interactions. By exploring a broad range of shear history and CNC concentrations, we construct master curves for the temporal evolution of the viscoelastic properties of the polymer-CNC gels, illustrating universality of the observed dynamics with respect to gel composition and flow conditions. We therefore find that polymer-CNC composite gels display a number of the distinctive features of colloidal glasses and, strikingly, that their response to the flow conditions encountered during processing can be tuned by chemical additives. These findings have implications for processing of dense CNC-polymer composites in solvent casting, 3D printing, and other manufacturing techniques.
Shear thickening denotes the rapid and reversible increase in viscosity of a suspension of rigid particles under external shear. This ubiquitous phenomenon has been documented in a broad variety of multiphase particulate systems, while its microscopi c origin has been successively attributed to hydrodynamic interactions and frictional contact between particles. The relative contribution of these two phenomena to the magnitude of shear thickening is still highly debated and we report here a discriminating experimental study using a model shear-thickening suspension that allows us to tune independently both the surface chemistry and the surface roughness of the particles. We show here that both properties matter when it comes to continuous shear thickening (CST) and that the presence of hydrogen bonds between the particles is essential to achieve discontinuous shear thickening (DST) by enhancing solid friction between closely contacting particles. Moreover, a simple argument allows us to predict the onset of CST, which for these highly-textured particles occurs at a critical volume fraction much lower than that previously reported in the literature. Finally, we demonstrate how mixtures of particles with opposing surface chemistry make it possible to finely tune the shear-thickening response of the suspension at a fixed volume fraction, paving the way for a fine control of shear-thickening transition in engineering applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا