ترغب بنشر مسار تعليمي؟ اضغط هنا

The collapse transition on superhydrophobic surfaces

320   0   0.0 ( 0 )
 نشر من قبل Halim Kusumaatmaja
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the transition between the Cassie-Baxter and Wenzel states of a slowly evaporating, micron-scale drop on a superhydrophobic surface. In two dimensions analytical results show that there are two collapse mechanisms. For long posts the drop collapses when it is able to overcome the free energy barrier presented by the hydrophobic posts. For short posts, as the drop loses volume, its curvature increases allowing it to touch the surface below the posts. We emphasise the importance of the contact line retreating across the surface as the drop becomes smaller: this often preempts the collapse. In a quasi-three dimensional simulation we find similar behaviour, with the additional feature that the drop can de-pin from all but the peripheral posts, so that its base resembles an inverted bowl.



قيم البحث

اقرأ أيضاً

When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surfac e, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surfaces grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplets final wetting state with constant volume, and show that it depends strongly on the surface texture. We then vary the volume of the droplet keeping fixed the geometric surface parameters to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show a very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and theoretical model can be modified to study other types of surface.
Contrasting with its sluggish behavior on standard solids, water is extremely mobile on superhydrophobic materials, as shown for instance by the continuous acceleration of drops on tilted water-repellent leaves. For much longer substrates, however, d rops reach a terminal velocity that results from a balance between weight and friction, allowing us to question the nature of this friction. We report that the relationship between force and terminal velocity is non-linear. This is interpreted by showing that classical sources of friction are minimized, so that the aerodynamical resistance to motion becomes dominant, which eventually explains the matchless mobility of water. Our results are finally extended to viscous liquids, also known to be unusually quick on these materials.
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and le ngth scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.
Rough or textured hydrophobic surfaces are dubbed superhydrophobic due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion for water to wet the surface texture, so that a w ater droplet in the superhydrophobic Cassie state, contacts only the tips of the rough hydrophobic surface. However, superhydrophobicity is remarkably fragile, and can break down due to the wetting of the surface texture to yield the Wenzel state under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse (dewetting) transition, this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure, allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase change heat transfer applications.
A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associat ed with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا