ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term photometric monitoring of the dwarf planet (136472) Makemake

71   0   0.0 ( 0 )
 نشر من قبل Tetiana Hromakina
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. A. Hromakina




اسأل ChatGPT حول البحث

We studied the rotational properties of the dwarf planet Makemake. The photometric observations were carried out at different telescopes between 2006 and 2017. Most of the measurements were acquired in BVRI broad-band filters of a standard Johnson-Cousins photometric system. We found that Makemake rotates more slowly than was previously reported. A possible lightcurve asymmetry suggests a double-peaked period of P = 22.8266$pm$0.0001~h. A small peak-to-peak lightcurve amplitude in R-filter A = 0.032$pm$0.005 mag implies an almost spherical shape or near pole-on orientation. We also measured BVRI colours and the R-filter phase-angle slope and revised the absolute magnitudes. The absolute magnitude of Makemake has remained unchanged since its discovery in 2005. No direct evidence of a newly discovered satellite was found in our photometric data; however, we discuss the possible existence of another larger satellite.

قيم البحث

اقرأ أيضاً

Context. We study the surface properties of transneptunian populations of Solar-system bodies. Aims. We investigate the surface characteristics of the dwarf planet (136472) Makemake and the resonant object (90482) Orcus. Methods. Using the FORS2 inst rument of the ESO-VLT we have carried out linear polarisation measurements of Makemake and Orcus. Results. Polarisation of Orcus is similar to that of smaller size objects. The polarimetric properties of Makemake are very close to those of Eris and Pluto. We have not found any significant differences in the polarisation properties of objects from different dynamical classes. However, there are significant differences in polarisation of large and smaller size objects, and between large TNOs with water-ice and methane-ice dominated surfaces. Conclusions. We confirm the different types of polarisation phase behavior for the largest and smaller size TNOs. To explain subtle surface polarisation of Pluto, Makemake and Eris we assume that their surfaces are covered by a thin layer of hoarfrost masking the surface structure.
Makemake is one of the brightest known trans-Neptunian objects, as such, it has been widely observed. Nevertheless, its visible to near-infrared spectrum has not been completely observed in medium resolving power, aimed at studying in detail the abso rption features of CH$_4$ ice. In this paper we present the spectrum of Makemake observed with X-Shooter at the Very Large Telescope (Chile). We analyse the detected features, measuring their location and depth. Furthermore, we compare Makemakes spectrum with that of Eris, obtained with the same instrument and similar setup, to conclude that the bands of the CH$_4$ ice in both objects show similar shifts.
Radio-to-TeV observations of the bright nearby (z=0.034) blazar Markarian 501 (Mrk 501), performed from December 2012 to April 2018, are used to study the emission mechanisms in its relativistic jet. We examined the multi-wavelength variability and t he correlations of the light curves obtained by eight different instruments, including the First G-APD Cherenkov Telescope (FACT), observing Mrk 501 in very high-energy (VHE) gamma-rays at TeV energies. We identified individual TeV and X-ray flares and found a sub-day lag between variability in these two bands. Simultaneous TeV and X-ray variations with almost zero lag are consistent with synchrotron self-Compton (SSC) emission, where TeV photons are produced through inverse Compton scattering. The characteristic time interval of 5-25 days between TeV flares is consistent with them being driven by Lense-Thirring precession.
We present results from photometric monitoring of V900 Mon, one of the newly discovered and still under-studied object from FU Orionis type. FUor phenomenon is very rarely observed, but it is essential for stellar evolution. Since we only know about twenty stars of this type, the study of each new object is very important for our knowledge. Our data was obtained in the optical spectral region with BVRI Johnson-Cousins set of filters during the period from September 2011 to April 2021. In order to follow the photometric history of the object, we measured its stellar magnitudes on the available plates from the Mikulski Archive for Space Telescopes. The collected archival data suggests that the rise in brightness of V900 Mon began after January 1989 and the outburst goes so far. In November 2009, when the outburst was registered, the star had already reached a level of brightness close to the current one. Our observations indicate that during the period 2011-2017 the stellar magnitude increased gradually in each pass band. The observed amplitude of the outburst is about 4 magnitudes (R). During the last three years, the increase in brightness has stopped and there has even been a slight decline. The comparison of the light curves of the known FUor objects shows that they are very diverse and are rarely repeated. However, the photometric data we have so far shows that the V900 Mons light curve is somewhat similar to this of V1515 Cyg and V733 Cep.
68 - C. S. Stalin IUCAA 2005
We report optical Cousins R and I band monitoring observations of the high redshift (z = 4.67) QSO SDSS J153259.96-003944.1 that does not show detectable emission lines in its optical spectrum. We show this object varies with a maximum amplitude of ~ 0.4 mag during a year and three months of monitoring. Combined with two other epochs of photometric data available in the literature, we show the object has gradually faded by ~0.9 mag during the period June 1998 - April 2001. A linear least squares fit to all available observations gives a slope of ~0.35 mag/yr which translates to ~1.9 mag/yr in the rest frame of the quasar. Such a variability is higher than that typically seen in QSOs but consistent with that of BL Lacs, suggesting that the optical continuum is Doppler boosted. Alternatively, within photometric errors, the observed lightcurve is also consistent with the object going through a microlensing event. Photoionization model calculations show the mass of the Broad Line Region to be few tens of solar mass similar to that of low luminosity Seyfert galaxies, but about orders of magnitude less than that of luminous quasars. Further frequent photometric/spectroscopic monitoring is needed to support or refute the different alternatives discussed here on the nature of SDSS J153259.96-003944.1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا