ﻻ يوجد ملخص باللغة العربية
Radio-to-TeV observations of the bright nearby (z=0.034) blazar Markarian 501 (Mrk 501), performed from December 2012 to April 2018, are used to study the emission mechanisms in its relativistic jet. We examined the multi-wavelength variability and the correlations of the light curves obtained by eight different instruments, including the First G-APD Cherenkov Telescope (FACT), observing Mrk 501 in very high-energy (VHE) gamma-rays at TeV energies. We identified individual TeV and X-ray flares and found a sub-day lag between variability in these two bands. Simultaneous TeV and X-ray variations with almost zero lag are consistent with synchrotron self-Compton (SSC) emission, where TeV photons are produced through inverse Compton scattering. The characteristic time interval of 5-25 days between TeV flares is consistent with them being driven by Lense-Thirring precession.
Mrk 421 and Mrk 501 are two close, bright and well-studied high-synchrotron-peaked blazars, which feature bright and persistent GeV and TeV emission. We use the longest and densest dataset of unbiased observations of these two sources, obtained at Te
As one of the brightest active blazars in both X-ray and very high energy $gamma$-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for $gamma$-rays above 0.3 TeV since November 200
We have monitored the BL Lac object Mrk 501 in optical $V$, $R$ and $I$ bands from 2010 to 2015. For Mrk 501, the presence of strong host galaxy component can affect the results of photometry. After subtracting the host galaxy contributions, the sour
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory surveys the very high energy sky in the 300 GeV to $>100$ TeV energy range. HAWC has detected two blazars above $11sigma$, Markarian 421 (Mrk 421) and Markarian 501 (Mrk 501). The observa
ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we r