ﻻ يوجد ملخص باللغة العربية
Dynamical decoupling is the leading technique to remove unwanted interactions in a vast range of quantum systems through fast rotations. But what determines the time-scale of such rotations in order to achieve good decoupling? By providing an explicit counterexample of a qubit coupled to a charged particle and magnetic monopole, we show that such time-scales cannot be decided by the decay profile induced by the noise: even though the system shows a quadratic decay (a Zeno region revealing non-Markovian noise), it cannot be decoupled by periodic spin echo pulses, no matter how fast the rotations.
We consider the class of quantum stochastic evolutions ($SLH$-models) leading to a quantum dynamical semigroup over a fixed quantum mechanical system (taken to be finite-dimensional). We show that if the semigroup is dissipative, that is, the couplin
We investigate what a snapshot of a quantum evolution - a quantum channel reflecting open system dynamics - reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can
We construct a large class of completely positive and trace preserving non-Markovian dynamical maps for an open quantum system. These maps arise from a piecewise dynamics characterized by a continuous time evolution interrupted by jumps, randomly dis
Estimating the features of noise is the first step in a chain of protocols that will someday lead to fault tolerant quantum computers. The randomised benchmarking (RB) protocol is designed with this exact mindset, estimating the average strength of n
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th