ﻻ يوجد ملخص باللغة العربية
Quantum emitters coupled to plasmonic resonators are known to allow enhanced broadband Purcell factors, and such systems have been recently suggested as possible candidates for on-demand single photon sources, with fast operation speeds. However, a true single photon source has strict requirements of high efficiency (brightness) and quantum indistinguishability of the emitted photons, which can be quantified through two-photon interference experiments. To help address this problem, we employ and extend a recently developed quantized quasinormal mode approach, which rigorously quantizes arbitrarily lossy open system modes, to compute the key parameters that accurately quantify the figures of merit for plasmon-based single photon sources. We also present a quantized input-output theory to quantify the radiative and nonradiative quantum efficiencies. We exemplify the theory using a nanoplasmonic dimer resonator made up of two gold nanorods, which yields large Purcell factors and good radiative output beta factors. Considering an optically pulsed excitation scheme, we explore the key roles of pulse duration and pure dephasing on the single photon properties, and show that ultrashort pulses (sub-ps) are generally required for such structures, even for low temperature operation. We also quantify the role of the nonradiative beta factor both for single photon and two-photon emission processes. Our general approach can be applied to a wide variety of plasmon systems, including metal-dielectrics, and cavity-waveguide systems, without recourse to phenomenological quantization schemes.
Many quantum computation and communication schemes require, or would significantly benefit from, true sources of single photon on-demand (SPOD). Unfortunately, such sources do not exist. It is becoming increasingly clear that coupling photons out of
Spontaneous parametric down-conversion (SPDC) in a laser pumped optical nonlinear medium can produce heralded single photons with a high purity but a very low yield. Improving the yield by increasing the pump power in SPDC inevitably reduces the puri
A quantum dot coupled to an optical cavity has recently proven to be an excellent source of on-demand single photons. Typically, applications require simultaneous high efficiency of the source and quantum indistinguishability of the extracted photons
We present a quantized quasinormal approach to rigorously describe coupled lossy resonators, and quantify the quantum coupling parameters as a function of distance between the resonators. We also make a direct connection between classical and quantum
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc