ﻻ يوجد ملخص باللغة العربية
A quantum dot coupled to an optical cavity has recently proven to be an excellent source of on-demand single photons. Typically, applications require simultaneous high efficiency of the source and quantum indistinguishability of the extracted photons. While much progress has been made both in suppressing background sources of decoherence and utilizing cavity-quantum electrodynamics to overcome fundamental limitations set by the intrinsic exciton-phonon scattering inherent in the solid-state platform, the role of the excitation pulse has been often neglected. We investigate quantitatively the factors associated with pulsed excitation that can limit simultaneous efficiency and indistinguishability, including excitation of multiple excitons, multi-photons, and pump-induced dephasing, and find for realistic single photon sources that these effects cause degradation of the source figures-of-merit comparable to that of phonon scattering. We also develop rigorous open quantum system polaron master equation models of quantum dot dynamics under a time-dependent drive which incorporate non-Markovian effects of both photon and phonon reservoirs, and explicitly show how coupling to a high Q-factor cavity suppresses multi-photon emission in a way not predicted by commonly employed models. We then use our findings to summarize the criteria that can be used for single photon source optimization.
Many quantum computation and communication schemes require, or would significantly benefit from, true sources of single photon on-demand (SPOD). Unfortunately, such sources do not exist. It is becoming increasingly clear that coupling photons out of
Spontaneous parametric down-conversion (SPDC) in a laser pumped optical nonlinear medium can produce heralded single photons with a high purity but a very low yield. Improving the yield by increasing the pump power in SPDC inevitably reduces the puri
We study the role of electron-phonon scattering for a pulse-triggered quantum dot single-photon source which utilizes a modified version of stimulated Raman adiabatic passage and cavity-coupling. This on-demand source is coherently pumped with an opt
Single-photon sources based on semiconductor quantum dots have emerged as an excellent platform for high efficiency quantum light generation. However, scalability remains a challenge since quantum dots generally present inhomogeneous characteristics.
The ability to generate mode-engineered single photons to interface with disparate quantum systems is of importance for building a quantum network. Here we report on the generation of a pulsed, heralded single photon source with a sub-GHz spectral ba