ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments

167   0   0.0 ( 0 )
 نشر من قبل Sabya Sachi Chatterjee
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform realistic simulations of the current and future long baseline experiments such as T2K, NO$ u$A, DUNE and T2HK in order to determine their ultimate potential in probing neutrino oscillation parameters. We quantify the potential of these experiments to underpin the octant of the atmospheric angle $theta_{23}$ as well as the value and sign of the CP phase $delta_{CP}$.



قيم البحث

اقرأ أيضاً

When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix $N$ describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation pha ses appear in $N$ that could be confused with the standard phase $delta_{text{CP}}$ characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.
The unitarity of the lepton mixing matrix is a critical assumption underlying the standard neutrino-mixing paradigm. However, many models seeking to explain the as-yet-unknown origin of neutrino masses predict deviations from unitarity in the mixing of the active neutrino states. Motivated by the prospect that future experiments may provide a precise measurement of the lepton mixing matrix, we revisit current constraints on unitarity violation from oscillation measurements and project how next-generation experiments will improve our current knowledge. With the next-generation data, the normalizations of all rows and columns of the lepton mixing matrix will be constrained to $lesssim$10% precision, with the $e$-row best measured at $lesssim$1% and the $tau$-row worst measured at ${sim}10%$ precision. The measurements of the mixing matrix elements themselves will be improved on average by a factor of $3$. We highlight the complementarity of DUNE, T2HK, JUNO, and IceCube Upgrade for these improvements, as well as the importance of $ u_tau$ appearance measurements and sterile neutrino searches for tests of leptonic unitarity.
Future neutrino-oscillation experiments are expected to bring definite answers to the questions of neutrino-mass hierarchy and violation of charge-parity symmetry in the lepton sector. To realize this ambitious program it is necessary to ensure a sig nificant reduction of uncertainties, particularly those related to neutrino-energy reconstruction. In this paper, we discuss different sources of systematic uncertainties, paying special attention to those arising from nuclear effects and detector response. By analyzing nuclear effects we show the importance of developing accurate theoretical models, capable to provide quantitative description of neutrino cross sections, together with the relevance of their implementation in Monte Carlo generators and extensive testing against lepton-scattering data. We also point out the fundamental role of efforts aiming to determine detector responses in test-beam exposures.
The p-value or statistical significance of a CP conservation null hypothesis test is determined from counting electron neutrino and antineutrino appearance oscillation events. The statistical estimates include cases with background events and differe nt data sample sizes, graphical plots to interpret results and methods to combine p-values from different experiments. These estimates are useful for optimizing the search for CP violation with different amounts of neutrino and antineutrino beam running, comparing results from different experiments and for simple cross checks of more elaborate statistical estimates that use likelihood fitting of neutrino parameters.
One of the main goals of the Long Baseline Neutrino Oscillation experiment (LBNO) experiment is to study the L/E behaviour of the electron neutrino appearance probability in order to determine the unknown phase $delta_{CP}$. In the standard neutrino 3-flavour mixing paradigm, this parameter encapsulates a possibility of a CP violation in the lepton sector that in turn could help explain the matter-antimatter asymmetry in the universe. In LBNO, the measurement of $delta_{CP}$ would rely on the observation of the electron appearance probability in a broad energy range covering the 1$^{st}$ and 2$^{nd}$ maxima of the oscillation probability. An optimization of the energy spectrum of the neutrino beam is necessary to find the best coverage of the neutrino energies of interest. This in general is a complex task that requires exploring a large parameter space describing hadron target and beamline focusing elements. In this paper we will present a numerical approach of finding a solution to this difficult optimization problem often encountered in design of modern neutrino beamlines and we will show the improved LBNO sensitivity to the presence of the leptonic CP violation attained after the neutrino beam optimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا