ﻻ يوجد ملخص باللغة العربية
Most bandit algorithm designs are purely theoretical. Therefore, they have strong regret guarantees, but also are often too conservative in practice. In this work, we pioneer the idea of algorithm design by minimizing the empirical Bayes regret, the average regret over problem instances sampled from a known distribution. We focus on a tractable instance of this problem, the confidence interval and posterior width tuning, and propose an efficient algorithm for solving it. The tuning algorithm is analyzed and evaluated in multi-armed, linear, and generalized linear bandits. We report several-fold reductions in Bayes regret for state-of-the-art bandit algorithms, simply by optimizing over a small sample from a distribution.
We revisit the classic regret-minimization problem in the stochastic multi-armed bandit setting when the arm-distributions are allowed to be heavy-tailed. Regret minimization has been well studied in simpler settings of either bounded support reward
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a
Adding domain knowledge to a learning system is known to improve results. In multi-parameter Bayesian frameworks, such knowledge is incorporated as a prior. On the other hand, various model parameters can have different learning rates in real-world p
We propose a meta-learning approach that learns from multiple tasks in a transductive setting, by leveraging the unlabeled query set in addition to the support set to generate a more powerful model for each task. To develop our framework, we revisit
In reinforcement learning, experience replay stores past samples for further reuse. Prioritized sampling is a promising technique to better utilize these samples. Previous criteria of prioritization include TD error, recentness and corrective feedbac