ﻻ يوجد ملخص باللغة العربية
The NL-eEDM collaboration is building an experimental setup to search for the permanent electric dipole moment of the electron in a slow beam of cold barium fluoride molecules [Eur. Phys. J. D, 72, 197 (2018)]. Knowledge of molecular properties of BaF is thus needed to plan the measurements and in particular to determine an optimal laser-cooling scheme. Accurate and reliable theoretical predictions of these properties require incorporation of both high-order correlation and relativistic effects in the calculations. In this work theoretical investigations of the ground and the lowest excited states of BaF and its lighter homologues, CaF and SrF, are carried out in the framework of the relativistic Fock-space coupled cluster (FSCC) and multireference configuration interaction (MRCI) methods. Using the calculated molecular properties, we determine the Franck-Condon factors (FCFs) for the $A^2Pi_{1/2} rightarrow X^2Sigma^{+}_{1/2}$ transition, which was successfully used for cooling CaF and SrF and is now considered for BaF. For all three species, the FCFs are found to be highly diagonal. Calculations are also performed for the $B^2Sigma^{+}_{1/2} rightarrow X^2Sigma^{+}_{1/2}$ transition recently exploited for laser-cooling of CaF; it is shown that this transition is not suitable for laser-cooling of BaF, due to the non-diagonal nature of the FCFs in this system. Special attention is given to the properties of the $A^2Delta$ state, which in the case of BaF causes a leak channel, in contrast to CaF and SrF species where this state is energetically above the excited states used in laser-cooling. We also present the dipole moments of the ground and the excited states of the three molecules and the transition dipole moments (TDMs) between the different states.
In order to realize more sensitive eEDM measurement, it would be worthwhile to find some new laser-cooled molecules with larger internal effective electric field (E$_{eff}$), higher electric polarizability and longer lifetime of the eEDM measurement
High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.49 nm and 460.86 nm of respective relev
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon
We demonstrate a simple stacked scheme that enables absorption imaging through a hole in the surface of a grating magneto-optical trap (GMOT) chip, placed immediately below a micro-fabricated vacuum cell. The imaging scheme is capable of overcoming t
Magnetic field enhancement has been studied in the past through replica and cavity cutting. Considerable progress of niobium cavity manufacturing and processing has been made since then. Wide variety of single cell cavities has been analyzed through