ﻻ يوجد ملخص باللغة العربية
This note contributes to the understanding of generalized entropy power inequalities. Our main goal is to construct a counter-example regarding monotonicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.
This paper gives improved R{e}nyi entropy power inequalities (R-EPIs). Consider a sum $S_n = sum_{k=1}^n X_k$ of $n$ independent continuous random vectors taking values on $mathbb{R}^d$, and let $alpha in [1, infty]$. An R-EPI provides a lower bound
Using a sharp version of the reverse Young inequality, and a Renyi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive Renyi entropy power inequalities for log-concave random vectors when Renyi parameters bel
An extension of the entropy power inequality to the form $N_r^alpha(X+Y) geq N_r^alpha(X) + N_r^alpha(Y)$ with arbitrary independent summands $X$ and $Y$ in $mathbb{R}^n$ is obtained for the Renyi entropy and powers $alpha geq (r+1)/2$.
New upper bounds on the relative entropy are derived as a function of the total variation distance. One bound refines an inequality by Verd{u} for general probability measures. A second bound improves the tightness of an inequality by Csisz{a}r and T
This paper is focused on $f$-divergences, consisting of three main contributions. The first one introduces integral representations of a general $f$-divergence by means of the relative information spectrum. The second part provides a new approach for