ﻻ يوجد ملخص باللغة العربية
Ultraviolet (UV) observations of local star-forming galaxies have begun to establish an empirical baseline for interpreting the rest-UV spectra of reionization-era galaxies. However, existing high-ionization emission line measurements at $z>6$ ($mathrm{W_{C IV, 0}} gtrsim 20$ {AA}) are uniformly stronger than observed locally ($mathrm{W_{C IV, 0}} lesssim 2$ {AA}), likely due to the relatively high metallicities ($Z/Z_odot > 0.1$) typically probed by UV surveys of nearby galaxies. We present new HST/COS spectra of six nearby ($z<0.01$) extremely metal-poor galaxies (XMPs, $Z/Z_odot lesssim 0.1$) targeted to address this limitation and provide constraints on the highly-uncertain ionizing spectra powered by low-metallicity massive stars. Our data reveal a range of spectral features, including one of the most prominent nebular C IV doublets yet observed in local star-forming systems and strong He II emission. Using all published UV observations of local XMPs to-date, we find that nebular C IV emission is ubiquitous in very high specific star formation rate systems at low metallicity, but still find equivalent widths smaller than those measured in individual lensed systems at $z>6$. Our moderate-resolution HST/COS data allow us to conduct an analysis of the stellar winds in a local nebular C IV emitter, which suggests that some of the tension with $z>6$ data may be due to existing local samples not yet probing sufficiently high $mathrm{alpha/Fe}$ abundance ratios. Our results indicate that C IV emission can play a crucial role in the JWST and ELT era by acting as an accessible signpost of very low metallicity ($Z/Z_odot < 0.1$) massive stars in assembling reionization-era systems.
Cosmic History has witnessed the lives and deaths of multiple generations of massive stars, all of them invigorating their host galaxies with ionizing photons, kinetic energy, fresh material and stellar-mass black holes. Ubiquitous engines as they ar
The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: stellar evolution, grain formation and destruction, galactic inflows and outflows. Understanding such processes is essential to follow th
The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star fo
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge
Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the revised Hipparcos reduction average 17% accuracy, in contrast to